FR. Conceicao Rodrigues College Of Engineering Department of Computer Engineering S.E. (Computer) (semester IV) (2022-2023)

Branch: Computer Engineering Semester:III semester

Year: 2022-2023

Course Title: Analysis of Algorithms (CSC402)	SEE: 3 Hours-Theory & Oral Examination
Total contact Hours: 36 Hours	Duration of SEE: 3 Hrs
SEE Marks: 80 (Theory) + 20 (IA)	
Lesson Plan Author: Prajakta Dhamanskar (Div. A)	Date:
Checked By:	Date:

Course Outcomes and Assessment Plan

	Course outcomes and Assessment 1 and						
Pr	Prerequisite: Data structure concepts, Discrete structures						
Co	Course Objectives:						
1	To provide mathematical approaches for Analysis of Algorithms						
2	To understand and solve problems using various algorithmic approaches						
3	To analyze algorithms using various methods						
Cou	urse Outcomes: At the end of the course learner will be able to						
1	Analyze the running time and space complexity of algorithms.						
2	Describe, apply and analyze the complexity of divide and conquer strategy.						
3	3 Describe, apply and analyze the complexity of greedy strategy.						
4	4 Describe, apply and analyze the complexity of dynamic programming strategy.						
5							
6	Explain and apply string matching techniques.						

Syllabus:

Module		Detailed Contents	Hours
1		Introduction	8
	1.1	Performance analysis, space, and time complexity Growth of function, Big-Oh, Omega Theta notation Mathematical background for algorithm analysis. Complexity class: Definition of P, NP, NP-Hard, NP-Complete Analysis of selection sort, insertion sort.	
	1.2	Recurrences: The substitution method, Recursion tree method, Master method	
2		Divide and Conquer Approach	6
	2.1	General method, Merge sort, Quick sort, Finding minimum and maximum algorithms and their Analysis, Analysis of Binary search.	

3		Greedy Method Approach	6
	3.1	General Method, Single source shortest path: Dijkstra Algorithm	
		Fractional Knapsack problem, Job sequencing with deadlines,	
		Minimum cost spanning trees: Kruskal and Prim's algorithms	
4		Dynamic Programming Approach	9
	4.1	General Method, Multistage graphs, Single source shortest path:	
		Bellman Ford Algorithm	
		All pair shortest path: Floyd Warshall Algorithm, Assembly-line	
		scheduling Problem0/1 knapsack Problem, Travelling Salesperson	
		problem, Longest common subsequence	
5		Backtracking and Branch and bound	6
	5.1	General Method, Backtracking: N-queen problem, Sum of subsets,	
		Graph coloring	
	5.2	Branch and Bound: Travelling Salesperson Problem, 15 Puzzle problem	
6		String Matching Algorithms	4
	6.1	The Naïve string-matching algorithm, The Rabin Karp algorithm, The	
		Knuth-Morris-Pratt algorithm	

Text	Textbooks:						
	T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to algorithms", 2 nd						
	Edition, PHI Publication 2005.						
2	Ellis Horowitz, Sartaj Sahni, S. Rajsekaran. "Fundamentals of computer algorithms"						
	University Press.						

References:

1	Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, "Algorithms", Tata McGraw- Hill Edition.
2	S. K. Basu "Design Methods and Analysis of Algorithm" PHI

2 S. K. Basu, "Design Methods and Analysis of Algorithm", PHI

Course Outcomes:

Upon completion of this course students will be able to:

CSC 402.1 :Analyze the running time and space complexity of algorithms. (Analyze)

CSC 402.2 : Analyze the complexity of divide and conquer strategy. (Analyze)

CSC 402.3 : Analyze the complexity of greedy strategy. (Analyze)

CSC 402.4 : Analyze the complexity of dynamic programming strategy. (Analyze)

CSC 402.5 : Analyze backtracking, branch and bound strategy. (Analyze)

CSC 402.4 : Analyze string matching techniques. (Analyze)

Mapping of CO and PO/PSO

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

Program Specific Outcomes (PSOs)

Student will have ability to

PSO1: Develop Artificial Intelligence and Machine Learning based systems.

PSO2: Apply cyber security mechanisms to ensure the protection of Information

Technology assets.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	(Engg	(Ana)	(De	(inve	(tools)	(engg	(Env)	(Eth)	(ind	(comm.)	(PM)	(life
	Know)		sign)	stiga)		Soci)			Team)			Long)
CSC402.1	1	1										
CSC402.2	1	1										
CSC402.3	1	1										
CSC402.4	1	1										
CSC402.5	1	1										
CSC402.6	1	1										
Course	1	1										
To PO												

СО	PSO1	PSO2
CSC402.1		
CSC402.2		
CSC402.3		
CSC402.4		
CSC402.5		
CSC402.6		
Course to PSO		

Mapping Justification:

Course Outcome	BL	Competency	Performance Indicator	РО	Map ping
CSC402.1	4	1.4 Demonstrate competence in specialized engineering knowledge to the program1.4.1 Apply theory and principles of Computer Science and engineering to solve an engineering problem		PO1	1
		2.3 Demonstrate an ability to formulate and interpret a model	2.3.1 Able to apply computer engineering principles to formulate modules of a system with required applicability and performance.	PO2	1
		2.4 Demonstrate an ability to execute a solution process and analyze results	2.4.1 Applies engineering mathematics to implement the solution.	PO2	1
CSC402.2	4	1.4 Demonstrate competence in specialized engineering knowledge to the program	1.4.1 Apply theory and principles of Computer Science and engineering to solve an engineering problem	PO1	1
		2.3 Demonstrate an ability to formulate and interpret a model	2.3.1 Able to apply computer engineering principles to formulate modules of a system with required applicability and performance.	PO2	1
		2.4 Demonstrate an ability to execute a solution process and analyze results	2.4.1 Applies engineering mathematics to implement the solution.	PO2	1
CSC402.3	4	1.4 Demonstrate competence in specialized engineering knowledge to the program	1.4.1 Apply theory and principles of Computer Science and engineering to solve an engineering problem	PO1	1
		2.3 Demonstrate an ability to formulate and interpret a model	2.3.1 Able to apply computer engineering principles to formulate modules of a system with required applicability and performance.	PO2	1
		2.4 Demonstrate an ability to execute a solution process and analyze results	2.4.1 Applies engineering mathematics to implement the solution.	PO2	1

CSC402.4	4	1.4 Demonstrate competence in specialized engineering knowledge to the program	1.4.1 Apply theory and principles of Computer Science and engineering to solve an engineering problem	PO1	1
		2.3 Demonstrate an ability to formulate and interpret a model	2.3.1 Able to apply computer engineering principles to formulate modules of a system with required applicability and performance.	PO2	1
		2.4 Demonstrate an ability to execute a solution process and analyze results	2.4.1 Applies engineering mathematics to implement the solution.	PO2	1
CSC402.5	4	1.4 Demonstrate competence in specialized engineering knowledge to the program	1.4.1 Apply theory and principles of Computer Science and engineering to solve an engineering problem	PO1	1
		2.3 Demonstrate an ability to formulate and interpret a model	2.3.1 Able to apply computer engineering principles to formulate modules of a system with required applicability and performance.	PO2	1
		2.4 Demonstrate an ability to execute a solution process and analyze results	2.4.1 Applies engineering mathematics to implement the solution.	PO2	1
CSC402.6		1.4 Demonstrate competence in specialized engineering knowledge to the program	1.4.1 Apply theory and principles of Computer Science and engineering to solve an engineering problem	PO1	1
		2.3 Demonstrate an ability to formulate and interpret a model	2.3.1 Able to apply computer engineering principles to formulate modules of a system with required applicability and performance.	PO2	1
		2.4 Demonstrate an ability to execute a solution process and analyze results	2.4.1 Applies engineering mathematics to implement the solution.	PO2	1

	Assessm Direct (v	ent Tool veightage: 80%)	Assessment Tool Indirect(weightage=20%)		
СО	Test 1/2	Assignment 1/2	Quiz	SEE (T)	Course Exit Survey
CSC402.1	Test 1 20%	Assignment 1 10%	10%	60%	100%
CSC402.2	Test 1 20%	Assignment 1 10%	10%	60%	100%
CSC402.3	Test 1 20%	Assignment 1 10%	10%	60%	100%
CSC402.4	Test 2 20%	Assignment 2 10%	10%	60%	100%
CSC402.5	Test 2 20%	Assignment 2 10%	10%	60%	100%
CSC402.6	Test 2 20%	Assignment 2 10%	10%	60%	100%

CO Assessment Tools:

<u>CSC402.1</u>: **Direct Methods(80%)**: Unit Test 1 + Assignment 1+Quiz+SEE(T)

CO1dm = 0.2T +0.1Assignment+0.1Quiz +0.6SEE(T) InDirect Methods(20%): Course exit survey *CO1idm* CSC402.1 = 0.8*CO1dm + 0.2* CO1idm

CSC402.1 = 0.8 CO1dm + 0.2 CO11dm

<u>CSC402.2</u>: Direct Methods(80%): Unit Test 1 + Assignment 1+Quiz+SEE(T)

CO2dm = 0.2T +0.1Assignment+0.1Quiz +0.6SEE(T)

InDirect Methods(20%): Course exit survey

CO2idm

<u>CSC402.2 = 0.8*CO2dm + 0.2* CO2idm</u>

<u>CSC402.3</u>: Direct Methods(80%): Unit Test 1 + Assignment 1+Quiz+SEE(T) CO3dm = 0.2T +0.1Assignment+0.1Quiz +0.6SEE(T) InDirect Methods(20%): Course exit survey

CO3idm

<u>CSC402.3 = 0.8*CO3dm + 0.2* CO3idm</u>

<u>CSC404.4</u>: **Direct Methods(80%):** Unit Test 2 + Assignment 2+Quiz+SEE(T)

CO4dm = 0.2T +0.1Assignment+0.1Quiz +0.6SEE(T) InDirect Methods(20%): Course exit survey

CO4idm

CSC402.4 = 0.8*CO4dm + 0.2* CO4idm

<u>CSC404.5:</u> Direct Methods(80%): Unit Test 2 + Assignment 2+Quiz+SEE(T) CO5dm = 0.2T +0.1Assignment+0.1Quiz +0.6SEE(T)

InDirect Methods(20%): Course exit survey

CO5idm

<u>CSC402.5 = 0.8*CO5dm + 0.2* CO5idm</u>

<u>CSC404.6</u>: **Direct Methods(80%):** Unit Test 2 + Assignment 2+Quiz+SEE(T)

CO6dm = 0.2T +0.1Assignment+0.1Quiz +0.6SEE(T)

InDirect Methods(20%): Course exit survey

CO6idm

CSC402.6 = 0.8*CO6dm + 0.2* CO6idm

<u>Course Level Gap (if any):</u> <u>Content beyond Syllabus:</u>

			<u>Lecture Plan</u>								
	Module 1: Introduction to Analysis of Algorithms										
No.	Da	ate	Торіс	Hrs	Content	Remark					
	Planned	Actual			Delivery Method						
1	09-01-2023	09-01-2023	Introduction to analysis of algorithms: Introduction to subject and fundamentals of algorithms. What is meant by an efficient algorithm?	12	Chalk and board						
2	11-1-2023	11-01-2023	Efficiency of algorithms, Time and Space Complexities Fundamentals		Chalk and board						
3	12-1-2023	12-01-2023	Calculation of time complexity for code samples		Chalk and board						
4	16-1-2023	12-01-2023	Calculation of time complexity for code samples continued		Chalk and board						
5	18-1-2023	16-01-2023	Asymptotic notation big, Omega, Theta definition		Chalk and board						

6	19-1-2023	18-01-2023	Asymptotic notations examples prove that kind of sums		Chalk and board	
7	23-1-2023	18-01-2023	properties of Asymptotic notation, best worst and average case analysis of linear search and Binary search ,writing recurrence equation		Chalk and board	
8	25-1-2023	19-01-2023	back substitution method of solving recurrence		Chalk and board	
9	30-1-2023	23-01-2023	recursion tree method		Chalk and board	
10	01-02-2023	25-01-2023	Space complexity for iterative and recursive programs		Chalk and board	
11	02-02-2023	30-01-2023	Masters method		Chalk and board	
12	06-02-2023	23-01-2023 (Lab)	Analysis of Insertion sort, Selection Sort and Optimized Bubble sort.		Chalk and board	
		Module 2:	Divide and Conquer Approach			
13	8-2-2023	01-02-2023	Merge Sort	4	Chalk and board	
14	9-2-2023	02-02-2023	Merge sort time and space complexity		Chalk and board	
15	13-2-2023	06-02-2023	Quick Sort algorithm, Time and Space complexity		Chalk and board	
16	16-2-2023	08-02-2023	Randomized Quick Sort, Min Max Algorithm		Chalk and board	
		Мо	dule 3: Greedy Method	-		
17	20-2-2023	09-02-2023	General Method, Fractional Knapsack Problem	4	chalk and board, PPT.	
18	22-2-2023	13-02-2023	Job Sequencing with deadline		Chalk and board	
19	23-2-2023	15-02-2023	MST- Prims, MST – Kruskal		Chalk and board	

20	1-3-2023	16-02-2023	Dijkstra's Shortest Path Algorithm (SSSP)		Chalk and board, Visualizatio n using Animation Video.	
		Module	e 4: Dynamic Programming	_		
21	2-3-2023		General Method, 0/1 Knapsack	7	Chalk and board , Lab performan ce	
22	6-3-2023		All pair shortest Path(Floyd Warshall Algo)		Chalk and board	
23	9-3-2023		Single Source Shortest Path (Bellman Ford)		Chalk and board ,	
24	13-3-2023		MultiStage Graph		Chalk and board	
25	15-3-2023		Traveling Salesman Problem		Chalk and board	
26	16-3-2023		Longest common subsequence		РРТ	
27	20-3-2023		Assembly line scheduling, Examples on Assembly line scheduling		Chalk and board	
	N	Iodule 4: Bac	ktracking and branch and bound	2		
28	23-3-2023		General Method of backtracking, n queen problem, Introduction to graph coloring	5	Chalk and board	
29	27-3-2023		Graph Coloring program and state space tree construction, Examples for practice.		Chalk and board	
30	29-03-2023		Sum of Subsets introduction, problem solving. Sum of subset program		Chalk and board	
31	3-4-2023		General Method of branch and bound, 8 puzzle problem		Chalk and board	

32	5-4-2023		15 puzzle problem, Traveling Salesman Problem		Chalk and board	
		Module 5	-	-		
33	6-4-2023		Naïve String Matching, Rabin Karp Algo	4	Chalk and board	
34	10-4-2023		KMP Algo prefix and suffix concept		Chalk and board	
35	12-4-2023		program on KMP algo		Chalk and board	
36	13-4-2023		Revision and Doubt Solving		Chalk and board	
37	20-4-2023					

Text Books:

- 1. T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to algorithms", 2nd Edition, PHI Publication 2005.
- 2. Ellis Horowitz, Sartaj Sahni, S. Rajsekaran. "Fundamentals of computer algorithms" University Press.

Reference Books:

- 1. Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, "Algorithms", Tata McGraw-Hill Edition.
- 2. S. K. Basu, "Design Methods and Analysis of Algorithm", PHI

Web References:

- 1. https://nptel.ac.in/courses/106/106/106106131/
- 2. https://swayam.gov.in/nd1_noc19_cs47/preview
- 3. https://www.coursera.org/specializations/algorithms
- 4. https://www.mooc-list.com/tags/algorithms

Evaluation Scheme

CIE Scheme Internal Assessment: 20 (Average of two tests)

Internal Assessment Scheme

Module		Lecture	No.	of questions	No. of questions	
		Hours	Test 1	Test 2	Test 3*	in SEE
1	Introduction	8	01 (10	-		
			marks)			
2	Divide and Conquer	6	01 (5	-		
	Approach		Marks)			
3	Greedy Method	6	01 (5	-		
	Approach		Marks)			

4	Dynamic Programming	9		01 (15	
	Approach			Marks)	
5	Backtracking and	6	-	01 (5	
	Branch and bound			Marks)	
6	String Matching	4	-	01 (5	
	Algorithms			Marks)	

Note: Four to six questions will be set in the Test paper

Verified by:	
Programme Coordinator	Subject Expert

Rubrics for Assignment

Indicator	Excellent	Good	Average	Below average
Timeline (2)	submitted on time or early (2)	Submitted next day (1)	Submitted in same week (0.5)	Submitted in next week (0)
Organizati on (2)	Well organized, neat and clear handwriting, neat diagrams with all labels. (2)	Organized to some extent, diagrams and handwriting is neat with some missing labels (1)	Organization not appropriate, diagrams are incomplete with some missing labels (0.5)	Poorly organized, diagrams incomplete (0)
Level of content (3)	All points are covered and answered accurately (3)	Some important points are omitted / addressed minimally (2)	Many important points are missing and the ones which are written are addresses in brief. (2-1)	Many important points are missing and the answers are not accurate. (1-0.5)
Knowledge about the topic (3)	All Concepts of a topic are clear and knows the application to real world problems (3)	All Concepts of a topic are mostly clear, lacks understanding about the application to real world problems (2)	Concepts of a topic are not understood clearly, lacks understanding about the application to real world problems (2-1)	Poor understanding of concepts and application to real world problems. (1-0.5)

<u>Rubrics for Lab Experiments</u>

Performa nce Indicator	Excellent	Good	Average	Below Average
Coding Standards [4M]	The code adheres to all standards. The code is exceptionally well organized and very easy to follow. Comments are complete and useful; variables' purposes are clearly communicated by their names. [4 marks]	There may be some minor failures to adhere to standards, for instance, indentation may be inconsistent, some lines may be too long, or a few variables may have unobvious names or be undocumented. [3 marks]	The code fails to adhere to standards at multiple locations indentation is inconsistent throughout the program, Many variable names are vague, comments are missing . [2 marks]	There are major problems with the program's design or coding style that would interfere with its comprehension, reuse, or maintenance. The code may be poorly formatted. [0.5-1M]
Output validation [2M]	Output is obtained for different cases of input.[2M]	Output is obtained only for some subsets of input.[1M]	Output is obtained only for some subsets of input, incorrect output for few test cases[0.5M]	no output is obtained. [0 mark]
Post Lab Questions [2M]	Answers to all questions are correct and explained in depth. [2 marks]	Answers to most of the questions are correct but not explained in depth. [1 marks]	Few answers are incorrect [0.5M]	Answers to most of the questions are incorrect. [0 mark]
Promptnes s [2M]	The laboratory report is submitted on time [2 mark]	The laboratory report is submitted next day. [1 marks]	-	The laboratory report is submitted in next practical session. [0 marks]

<u>Nublics to</u>	<u>r Asignments:</u>		
Indicator	Excellent	Good	Below average
Timeline (2)	submitted on time or early (2)	Submitted next day (1)	Submitted in same week (0.5)
Organization (2)	Well organized, neat and clear handwriting, neat diagrams with all labels. (2)	Organized to some extent, diagrams and handwriting is neat with some missing labels (1)	Poorly organized, diagrams incomplete (0.5)
Level of content (3)	All points are covered (3) and answered accurately	Some important points are omitted / addressed minimally (1-2)	Many important points are missing and the answers are not accurate. (1-0)
Knowledge about the topic (3)	All Concepts of a topic are clear and knows the application to real world problems (3)	All Concepts of a topic are mostly clear lacks understanding about the application to real world problems (2-1)	Poor understanding of concepts and application to real world problems. (1-0)

Rubrics for Asignments:

AOA Assignment 1

CLASS: SE COMPS (SEM IV)

YEAR: 2022-23

Sr.	Question	СО	BL	PI
No.				
1	Solve following recurrence relation using back substitution method. 1. $T(n)=2T(\frac{n}{2})+1$ 2. $T(n)=2T(\frac{n}{2})+3n^2.$	CSC402.1	3	1.4.1, 2.3.2, 2.4.1
2	Solve the following recurrence by recursion tree method. 1. $T(n)=T(\frac{n}{2})+)+T(\frac{n}{4})+T(\frac{n}{8})+n$ 2. $T(n)=3T(\frac{n}{4})+cn^2$	CSC402.1	3	1.4.1, 2.3.2, 2.4.1
3	Apply Master method to derive complexity, clearly mention the cases applied $T(n) = 64T(n/8)-n^2 \log n$ $T(n) = 6T(n/4)+ n \sqrt{n}$ $T(n) = 2 T(n/2) + n/\log n$	CSC402.1	3	1.4.1, 2.3.2, 2.4.1
4	Analyze the time complexity of following code. a) int fun(int n) { int count = 0; for (int i = n; i > 0; i /= 2) for (int j = 0; j < i; j++) count += 1; return count; } b) for(i=2 to m-1) { for(j=3 to i) { sum=sum+A[i][j] } }	CSC402.1	4	1.4.1, 2.3.2, 2.4.1

	for(; while	= 0, j = 0; i < n; ++i) e(j < n && arr[i] <]) j++;				4	
5	that includes	Given N events with their starting and ending times, find a schedule that includes as many events as possible using greedy strategy. It is not possible to select an event partially. Consider the below events				4	1.4.1, 2.3.2, 2.4.1
	event	t starting ti	me ending tin	ne			
	\overline{A}	1	3				
	В	2	5				
	C	3	9				
	D	6	8				
6	Jobs J1 J2 J3 J4 Answer the fo • Write the o	4 J5 J6 J7 Deadlines 1 3 4 Ilowing questions- ptimal schedule that give		vn- CSC	402.3	3	1.4.1, 2.3.2, 2.4.1
7 a	laying cable cable only al a graph rep Some of the longer, or re represented	Write the optimal schedule that gives maximum profit. What is the maximum earned profit? Intify an algorithm a telecommunications company will use for ing cable to a new neighborhood. If it is constrained to bury the ole only along certain paths (e.g. along roads), then there would be graph representing which points are connected by those paths. me of those paths might be more expensive, because they are ger, or require the cable to be buried deeper; these paths would be presented by edges with larger weights. The objective of the mpany is to cover all locations using a minimum path.					1.4.1, 2.3.2, 2.4.1
7 b		following graph for the path covering all locate	e above problem statement a tions.	ind find CSC	402.3	3	1.4.1, 2.3.2, 2.4.1

8	Once upon a time there was a city that had no roads. Getting around the city was particularly difficult after rainstorms because the ground became very muddy, cars got stuck in the mud and people got their boots dirty. The mayor of the city decided that some of the streets must be paved, but did not want to spend more money than necessary because the city also wanted to build a swimming pool. The mayor therefore specified two conditions:1. Enough streets must be paved so that it is possible for everyone to travel from their house to anyone else's house only along paved roads, and 2. The paving should cost as little as possible. Here is the layout of the city. The number of paving stones between each house represents the cost of paving that route. Find the best route that connects all the houses, but uses as few counters (paving stones) as possible.	CSC402.3	4	1.4.1, 2.3.2, 2.4.1
9 a	Identify and apply the fastest sorting algorithm based on Divide and Conquer strategy on the following array. Show all the steps in the first iteration. [27, 10, 36, 18, 25, 45]	CSC402.2	3	1.4.1, 2.3.2, 2.4.1

9 b	 b) Identify and apply the stable sorting algorithm based on Divide and Conquer strategy on the following array. Show all the steps. [57, 23, 89, 55, 12, 40,25] 	CSC402.2	3	1.4.1, 2.3.2, 2.4.1
10	Compare the complexities of Optimized Linear search, Binary search, Bubble, Selection, Insertion, Quick, randomized quick and Merge for Best, Average and Worst case in tabular form.	CSC402.2	3	1.4.1, 2.3.2, 2.4.1
11	Apply the greedy strategy to solve minimum coin change problem. (Content beyond syllabus)	CSC402.3	3	1.4.1, 2.3.2, 2.4.1

Last Date of Submission:27th March 2023

FR. CONCEICAO RODRIGUES COLLEGE OF ENGG.

Fr. Agnel Ashram, Bandstand, Bandra (W) Mumbai 400 050.

I UNIT TEST SEMESTER / BRANCH: IV/COMPUTER-Div. A&B SUBJECT: Analysis of Algorithms (AOA) DATE: 03/03/2023

MAX. MARKS: 20 TIMING: 1.00 pm to 2.00 pm

Student should be able to						
CSC401.1	Analyze the running time and space complexity of algorithms.					
CSC401.2	Analyze the complexity of divide and conquer strategy.					
CSC401.3	Analyze the complexity of greedy strategy.					

Q.NO	Questions	MARKS	СО	BL	PI
1.A	Analyze the running time complexity of following code. a. for (i=1; i < n; i *= 2) { for (j = n; j > 0; j /= 2) { for (k = j; k < n; k += 2) { sum += (i + j * k); } }	2	CSC401.1	4	1.4.1, 2.3.2, 2.4.1

	b.	2	CSC401.1	4	1.4.1,					
	int fun(int n)				2.3.2, 2.4.1					
	{									
	int count = 0;									
	for $(int i = 0; i < n; i++)$									
	<pre>for (int j = i; j > 0; j)</pre>									
	return count;									
	}									
1.B	Solve the following recurrence using the Back Substitution	2	CSC401.1	3	1.4.1, 2.3.2					
	Method. $T(n)=T(n-1)+n^4$				2.4.1					
1 C	Solve the following recurrence using Recursion Tree Method	2	CSC401.1	3	1.4.1, 2.3.2					
	$T(n)=2T(\frac{n}{2}) + n^2$				2.4.1					
1 D	Solve the following recurrence using Master's Method. Clearly mention the cases applied.	2	CSC401.1	3	1.4.1, 2.3.2 2.4.1					
	$T(n)=4T(\frac{n}{2}) + n^2\sqrt{n}$									
					1.4.1.0.0.0					
2.A	Identify and apply the fastest sorting algorithm based on	3	CSC401.2	3	1.4.1, 2.3.2 2.4.1					
	Divide and Conquer strategy on the following array. Show all									
	the steps in the first iteration. [40, 11, 4, 72, 17, 2, 49]									
2.B	Analyze the time complexity of Worst Case of the above.	2	CSC401.2	4	1.4.1, 2.3.2 2.4.1					
3.A	You have a business with several offices; you want to lease	4	CSC401.3	4	1.4.1, 2.3.2					
	phone lines to connect them up with each other, and the				2.4.1					
	phone company charges different amounts of money to									
	connect different pairs of cities. You want a set of lines that									
	connects all your offices with a minimum total cost. Use a									
	suitable algorithm to be used in this scenario to find the									
	optimal solution.									
	$\begin{bmatrix} a \\ g \\$									
2 D		1	000404 6	4	1.4.1, 2.3.2					
3.B	Analyze the time complexity of the above algorithm.	1	CSC401.3	4	1.4.1, 2.3.2 2.4.1					
	OR									

3.A	truck loaded table rupee	ks with a w d, Awaiting e. Each of t es and weig	d a shipping company i reight capacity of 150 k shipments are the iten these items has an ass ght.The objective is to N loaded onto the truck wi truck's weight capacity	4	CSC401.3	4	1.4.1, 2.3.2 2.4.1	
	Item	Value	Weight in kg					
	1	150	50					
	2	145	45					
	3	135	30					
	4	145	35					
	5	120	40					
	6	70	35]				
3.B	Analyze the time complexity of the above algorithm.			1	CSC401.3	4	1.4.1, 2.3.2, 2.4.1	

*BL – Bloom's Taxonomy Levels (1- Remembering, 2- Understanding, 3 – Applying, 4 – Analysing, 5 – Evaluating, 6 - Creating)

*CO – Course Outcomes

*PO – Program Outcomes;

*PI Code – Performance Indicator Code

BL Distribution PIE chart and CO distribution bar chart (Following diagram is just for reference purpose only)

