Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandra

Department of Computer Engineering

Course Outcomes & Assessment Plan

B.E. (Computer) (semester VIII) Subject: Distributed Computing Subject Code: CSC801 Academic Term: Jan – May 2023 Teacher: Merly Thomas Puthiyadom

Syllabus:

Module	Hrs	Topics	
No.			
1.0	6	Introduction to Distributed Systems 1.1 Characterization of Distributed Systems: Issues, Goals, and Types of distributed systems, Grid and Cluster computing Models, Hardware and Software Concepts: NOS, DOS. 1.2 Middleware: Models of Middleware, Services offered by middleware.	15%
2.0	4	Communication 2.1 Inter-process communication (IPC), Remote Procedure Call (RPC), Remote Method Invocation (RMI) 2.2 Message Oriented Communication, Stream Oriented Communication, Group Communication.	
3.0	10	Synchronization3.1 Clock Synchronization: Physical clocks, Logical Clocks, Election Algorithms, 3.2 Mutual Exclusion: Distributed Mutual Exclusion-Classification of mutual Exclusion Algorithm, Requirements of Mutual Exclusion Algorithms, Performance measures. 3.2 non-Token based Algorithms: Lamport Algorithm, Ricart-Agrawala's Algorithm, Maekawa's Algorithm. Token Based Algorithms: Suzuki-Kasami's Broadcast Algorithms, Singhal's Heuristics Algorithm, Raymond's Tree Based Algorithm, Comparative Performance Analysis. 3.4 Deadlock: Introduction, Deadlock Detection: Centralized approach, Chandy -Misra-Hass Algorithm.	25%
4.0	6	Resource and Process Management4.1 Desirable Features of global Scheduling algorithm, Task assignment approach, Load balancing approach, load sharing approach, 4.2 Introduction to process management, process migration, Code Migration	15%
5.0	8	Consistency, Replication and Fault Tolerance 5.1 Distributed Shared Memory: Architecture, design issues. 5.2 Introduction to replication and consistency, Data-Centric and Client- Centric Consistency Models, Replica Management 5.2 Fault Tolerance: Introduction, Process resilience, Reliable client-server and group communication, Recovery	20%
6.0	6	 Distributed File Systems 6.1 Introduction, good features of DFS, File models, File Accessing models, File-Caching Schemes, File Replication, Network File System (NFS). 6.2 Designing Distributed Systems: Google Case Study. 	15%
	40	Total	100

Course Learning Objectives:

The price/performance ratios offered by distribution in computing, and the concept of sharing resources globally, along with the steady improvements in networking technologies have made Distributed systems very attractive and highly popular. The fundamental concepts and design principles discussed in the course are applicable to a variety of systems especially WWW.

This course aims to:

Course Objectives.

1 To provide students with contemporary knowledge in distributed systems.

2 To explore the various methods used for communication in distributed systems.

3 To provide skills to measure the performance of distributed synchronization algorithms.

4 To provide knowledge of resource management, and process management including process migration.

5 To learn issues involved in replication, consistency, and file management

6 To equip students with skills to analyze and design distributed applications.

Prerequisites: Operating Systems Computer Networks

Department PSOs

PSO1: Develop Artificial Intelligence (AI) and Machine Learning (ML) systems.

PSO2: Apply cyber security mechanisms to ensure the protection of information technology assets.

Course Outcomes:

Upon successful completion of this course students will be able to:

CSC802.1	Demonstrate knowledge of the basic elements and concepts related to
	distributed systems & technologies (B2 – Comprehension)
CSC802.2	Illustrate the middleware technologies that support distributed applications
	such as RPC, RMI and Object based middleware. (B3 – Application)
CSC802.3	Analyze the various techniques used for clock synchronization, mutual
	exclusion and deadlock (B4 – Analysis)
CSC802.4	Describe the concepts of Resource and Process management (B2 –
	Comprehension)
CSC802.5	Assess the significance of Consistency and Replication Management models,
	and Fault Tolerance techniques (B4 – Analysis)
CSC802.6	Apply the knowledge of Distributed File System in building large-scale
	distributed applications. (B3 – Application)

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2									2
CO2	3		2	2	2							
CO3	3	2	2	2								
CO4	3		2	2								
CO5	3	3	2									
CO6	3	3		2								
Course	3	3	2	3	3							2

CO-PSO Relevance Mapping - None

Justification of CO to PO mapping

CSC802.1		rate knowledge of the basic elements and concepts related to d systems & technologies
	PO1	As an Engineering solution to some complex computational problems which is efficient and cost effective
	PO3	Design of System components to meet the specific needs
	PO12	Gain ability to be prepared for life-long learning in the broadest context of technological change
	Tools	Lectures, Presentations, Practical Sessions, Assignment I & IV
	Target	2.7
CSC802.2		the middleware technologies that support distributed applications PC, RMI and Object based middleware.
	PO1	Specialized solutions to some complex computational problems
	PO3	Design of System components or mini models to meet the specific needs
	PO4	Implementation concepts of RPC, RMI and MPI
	PO5	Apply appropriate techniques and tools
	Tools	Lectures, Presentations, Practical Sessions
	Target	2.7
CSC802.3	Analyze t exclusion	he various techniques used for clock synchronization and mutual
	PO1	An Engineering solution to some complex computational problems
	PO2	Formulate solutions considering the several design issues
	PO3	Design solutions by developing components and processes
	PO4	Experimental approach to design solutions and valid conclusions

	Tools	Lectures, Presentations, Practical Sessions, Seminars						
	Target	2.7						
CSC802.4	Demonstrate the concepts of Resource and Process management and Fault tolerant solutions							
	PO1	Specialized solutions to some complex computational problems						
	PO3	Design of System components or mini models to meet the specific need						
	PO4	Apply appropriate techniques and tools for solutions						
	Tools	Lectures, Presentations, Practical Sessions, Seminars						
	Target	2.7						
CSC802.5	Assess the significance of Consistency and Replication Management							
	PO1	An Engineering solution to some complex computational problems						
	PO2	Formulate solutions considering the several design issues						
	PO3	Design solutions by developing components and processes						
	Tools	Lectures, Presentations, Practical Sessions, Seminars						
	Target	2.7						
CSC802.6	systems li	e knowledge of Distributed File System to analyze various file ike NFS, AFS and the experience in building large-scale d applications						
	PO1	An Engineering solution to some complex computational problems						
	PO2	Formulate solutions considering the several design issues						
	PO3	Design solutions by developing components and processes						
	Tools	Lectures, Presentations, Practical Sessions, Seminars						
	Target	2.7						

Modes of delivery

Most of the time is spent on teaching the principles of Distributed Computations.

Modes of Delivery	Brief description of content delivered	Attained COs	Attained POs
Class room lectures	All modules	ALL	PO1, PO2, PO3,
and Presentations	Airmodules	ALL	PO4, PO12
Supported by Lab	Modules 2-6	CO2, CO3, CO6	PO1, PO2, PO3,
Experiments		02, 003, 000	PO4, PO5, PO12
Students' presentations	Module 1,3,5	CO5	PO1, PO10
Case Study	DCE, CORBA, HADOOP, NFS	CO6	

CO Assessment Tools:

Course Outcome	Asse	ssmen							
	Direc	t Me	Indirect Method (20%)						
	Unit ⁻	Fests	Assig	nmen	ts		SEE	Laboratory Practical	Course exit survey
	1	2	1	2	3	4		Practical	
CO1	30%		30%				40%		100%
CO2	20%	20%		20%			40%		100%
СО3								100%	100%
CO4		30%			30%		40%		100%
CO5		30%				30%	40%		100%

Assignments:

Assignment No.1	On completion of the 1 st module
Assignment No.2	On completion of 2 nd and 3 rd module
Assignment No.3	On completion of the 4 th module
Assignment No.4	On completion of 2 nd and 3 rd module
Assignment No.5	On completion of the 1 st module

Four assignments will be given on completion the modules as follows:

Rubrics for Assignment Grading:

Indicator				
Timeline (2)		More than one session late (0)	One sessions late (1)	On time (2)
Level of content (4)	Just Managed (1)	Major points are addressed minimally (2)	Only major topics are covered(3)	Most major and some minor criteria are included. Information is Adequate (4)
Reading and Understanding (4)	Just Managed (1)	Superficial at most (2)	Understood concepts but no related topics (3)	Understood concepts and related topics (4)

Laboratory Experiment

Total ten number of laboratory experiments will be performed in the practical session as per the time schedule in the time table.

Rubrics for Laboratory Experiment Grading:

Indicator				
Timeline (3)	More than two sessions late (0)	Two sessions late (1)	One sessions late (2)	On time (3)
Knowledge (4)	Not adequate (1)	Superficial at most (2)	Understood concepts but no related topics (3)	Understood concepts and working (4)
skill (3)	Just Managed (1)	Just Managed (1)	Few steps are not appropriate (2)	Structured and optimum performance (3)

Teaching schema

Program Structure for Fourth Year Computer Engineering

UNIVERSITY OF MUMBAI (With Effect from 2022-2023)

Sem	ector	VIII
Sem	cotter	V 111

Course	Course Name	Teaching (Contact		Credits Assigned			
Code	Course Maine	Theory	Pract. Tut.	Theory	Pract.	Tota	
CSC801	Distributed Computing	3		3		3	
CSDC 801X	Department Level Optional Course -5	3		3		3	
CSDC 802X	Department Level Optional Course -6	3		3		3	
ILO 801X	Institute Level Optional Course -2	3		3		3	
CSL801	Distributed Computing Lab		2		1	1	
CSDL 801X	Department Level Optional Course -5 Lab		2		1	1	
CSDL 802X	Department Level Optional Course -6 Lab		2		1	1	
CSP801	Major Project 2		12#		6	6	
	Total	12	18	12	9	21	

Examination schema

		Exami	inatio	n scher	na				
					Examina	tion Schen	ie		
6		Theory			Term Work	Pract & oral	Total		
Course Code	Course Name	Inter	nal Asse	ssment	End Sem Exam	Exam Duration (in Hrs)			
		Test 1	Test 2	Avg					
CSC801	Distributed Computing	20	20	20	80	3			100
CSDC 801X	Department Level Optional Course -5	20	20	20	80	3			100
CSDC 802X	Department Level Optional Course -6	20	20	20	80	3			100
ILO 801X	Institute Level Optional Course -2	20	20	20	80	3			100
CSL801	Distributed Computing Lab						25	25	50
CSDL 801X	Department Level Optional Course -5 Lab						25	25	50
CSDL 802X	Department Level Optional Course -6 Lab						25	25	50
CSP801	Major Project- 2						100	50	150
	Total			80	320		175	125	700

Textbooks and References

T1	Andrew S. Tanenbaum and Maarten Van Steen, "Distributed Systems:
	Principles and Paradigms", 2 nd edition, Pearson Education.
Τ2	Mukesh Singhal, Niranjan G. Shivaratri, "Advanced concepts in operating systems: Distributed, Database and multiprocessor operating systems", MC Graw Hill education.
Т3	Pradeep K. Sinha, "Distributed Operating System-Concepts and design", PHI.
R 1	M. L. Liu, —Distributed Computing Principles and Applications, Pearson Addison Wesley, 2004
R2	George Coulouris, Jean Dollimore, Tim Kindberg, "Distributed Systems: Concepts and Design", 4th Edition, Pearson Education, 2005
R3	Andrew S. Tanunbaum "Distributed Operating system" Low price edition, Pearson Education.
	Useful Links
L1	https://nptel.ac.in/courses/106106107
L2	https://nptel.ac.in/courses/106106168
L3	http://csis.pace.edu/~marchese/CS865/Lectures/Chap7/Chapter7fin.htm
L4	https://nptel.ac.in/courses/106104182

Module	Unit	Topics	Books	Portion
No	No			(From Book)
1	Introdu	ction to Distributed Systems CO1	4 Hrs	
	1.1	Characterization of Distributed Systems: Issues, Goals, Types of distributed systems,	T1	1.1, 1.2, 1.3.1
		Grid and Cluster computing Models, Hardware and Software Concepts: NOS, DOS	R3	1.3,1.4

	1.2	Middleware: Models of middleware, Services offered by middleware	R2	1.1-1.5
2	Comm	unication CO2	4 Hrs	
	2.1	Interprocess communication (IPC): Remote Procedure Call (RPC), Remote Method Invocation (RMI)	T1 R2	4 (2.1-,2.3)
	2.2	Message Oriented Communication, Stream Oriented Communication, Group Communication. (ordering)	T1 T3	4 3.10
3	Synch	ronization CO3	10 Hrs	
	3.1	Clock Synchronization: physical clock, Logical Clocks, Election Algorithms, Distributed Mutual Exclusion algorithms, Requirements of Mutual Exclusion Algorithms, Performance measure, Non- token Based (Lamport Algorithm, Ricart–Agrawala's Algorithm, Maekawa's Algorithm), Token based (Suzuki- Kasami's Broadcast Algorithms ,Raymond's Tree based Algorithm) and Comparative Performance Analysis.	T1 T2	6.1, 6.2, 6.5 6.3 to 6.14
	3.2	Deadlock: Introduction, Centralized, Chandy - Misra_Hass Algorithm.	R3	3.5
4	Resour	ce and Process Management CO4	10 Hrs	
	4.1	Desirable Features of global Scheduling algorithm, Task assignment approach, Load balancing approach, load sharing approach	Т3	7
	4.2	Introduction to process management, process	Т3	8.2
		migration, Code Migration	T1	3.5
5	Replica	ation, Consistency and Fault Tolerance	8 Hrs	CO5
	5.1	Distributed Shared Memory: Architecture, design issues.	Т3	5.2,5.3
	5.2	Introduction to replication and consistency, Data-Centric and Client-Centric Consistency Models, Replica Management.	T1 / L3	7
	5.3	Fault Tolerance: Introduction, Process resilience, Recovery.	T1	8.1, 8.2, 8.6
6	Distrib	outed File Systems CO6	8 Hrs	
	6.1	Introduction and features of DFS, File models, File Accessing models, File-Caching Schemes, File Replication,	T1	9.1 to 9.7
		Case Study: Network File System (NFS).	R2	8
	6.2	Designing Distributed Systems: Google Case Study.	R2	9

<u>Lesson Plan</u>

Teacher-in-Charge: Merly Thomas

Class	BE (Computer Engined	BE (Computer Engineering) Semester VIII			
Academic term	Jan – May 2023	Jan – May 2023			
Subject	Distributed Computin	Distributed Computing			
Subject Code	CSC 801				
	CSL 802				
No of Students	71				
Periods (Hours) per week	Lecture	3			
	Practical	2			
	Tutorial				
Evaluation System		Hours	Marks		
	Theory examination	3	80		
	Internal Assessment	1+1	20		
	Practical Examination				
	Oral Examination		25		
	Term work		25		
	Total		150		
Time Table w.e.f 23/01/2023					
Time Table	Day		me		
(Theory)	Wednesday	11.15-12.15 pm			
	Thursday	12.15-1.15 pm			
	Friday		11.00 am		
	Tuesday	1.45-3.45 pm (A Batch)			
(Practicals)	Tuesday	-	om (D Batch)		
	Wednesday	1.45-3.45 p	om (C Batch)		
	Thursday1.45-3.45 pm (B Batch				

	e 1: Intr	oduction to [Distributed S	ystems	
01	Lecture	Date		Торіс	Remarks(If any)
	No.	Planned	Actual		
1.1	1	10/01/2023	10/01/2023	Characterization of Distributed Systems: Issues of distributed systems	
	2	11/01/2023	11/01/2023	Goals, and types of distributed systems	
	3	13/01/2023	13/01/2023	Distributed System Models, Hardware concepts,	
1.2	4	17/01/2023	17/01/2023	Software Concept	
	5	19/01/2023	19/01/2023	Middleware: Models of Middleware	
	6	20/01/2023	20/01/2023	Services offered by middleware	
	7	20/01/2023		Client Server models	Assignments Seminars
Modul	e 2 : Com	munication		1	
<i>Modul</i> 2.1	e 2 : Com	25/01/2023	25/01/2023	Layered Protocols, Inter process communication (IPC)	
			25/01/2023 27/01/2023		
	8	25/01/2023		communication (IPC)	
	8	25/01/2023 27/01/2023		communication (IPC) Remote Procedure Call (RPC) Remote Object Invocation, Remote	
	8 9 10	25/01/2023 27/01/2023 01/02/2023		communication (IPC) Remote Procedure Call (RPC) Remote Object Invocation, Remote Method Invocation (RMI)	
	8 9 10 11	25/01/2023 27/01/2023 01/02/2023 02/02/2023		communication (IPC) Remote Procedure Call (RPC) Remote Object Invocation, Remote Method Invocation (RMI) MPI – Message Passing Interface Message Types, Message Oriented	
2.1	8 9 10 11 12	25/01/2023 27/01/2023 01/02/2023 02/02/2023 03/02/2023		communication (IPC) Remote Procedure Call (RPC) Remote Object Invocation, Remote Method Invocation (RMI) MPI – Message Passing Interface Message Types, Message Oriented Communication	
2.1	8 9 10 11 12 13	25/01/2023 27/01/2023 01/02/2023 02/02/2023 03/02/2023 08/02/2023		communication (IPC)Remote Procedure Call (RPC)Remote Object Invocation, RemoteMethod Invocation (RMI)MPI – Message Passing InterfaceMessage Types, Message OrientedCommunicationStream Oriented Communication	Case Study
2.1	8 9 10 11 12 13 14	25/01/2023 27/01/2023 01/02/2023 02/02/2023 03/02/2023 08/02/2023 09/02/2023		communication (IPC)Remote Procedure Call (RPC)Remote Object Invocation, RemoteMethod Invocation (RMI)MPI – Message Passing InterfaceMessage Types, Message OrientedCommunicationStream Oriented CommunicationGroup Communication	Case Study
2.1	8 9 10 11 12 13 14 15	25/01/2023 27/01/2023 01/02/2023 02/02/2023 03/02/2023 08/02/2023 09/02/2023 10/02/2023		communication (IPC) Remote Procedure Call (RPC) Remote Object Invocation, Remote Method Invocation (RMI) MPI – Message Passing Interface Message Types, Message Oriented Communication Stream Oriented Communication Group Communication DCE	Case Study

	17	16/02/2023	Election Algorithms, Mutual	
			Exclusion	
-	18	17/02/2023	Distributed Mutual Exclusion-	Flipped Class
			Classification of mutual Exclusion	Room
			Algorithms	
	19	22/02/2023	Requirements of Mutual Exclusion	
			Algorithms, Performance measure.	
3.2	20	23/02/2023	Non Token based Algorithms:	
			Lamport Algorithm, Ricart-	
			Agrawala's Algorithm, Maekawa's	
			Algorithm	
-	21	24/02/2023	Non Token based Algorithms:	
			Comparative Performance Analysis	
3.3	22	02/03/2023	Token Based Algorithms: Suzuki-	
			Kasami's Broadcast Algorithms,	
-	23	03/03/2023	Singhal's Heuristics Algorithm,	
			Raymond's Tree Based Algorithm	
-	24	08/03/2023	Token Based Algorithms:	
			Comparative Performance Analysis	
Module	4: Res	ource and Process I	Vanagement	
4.1	25	09/03/2023	Desirable Features of global	
			Scheduling algorithm, Task	
			assignment approach	
	26	10/03/2023	Load balancing approach	
-	27	15/03/2023	Load sharing approach	
4.2	28	16/03/2023	Introduction to process	
			management, process migration, ,	
-		17/03/2023	Threads, Virtualization	
-		22/03/2023	Clients, Servers, Code Migration	
Module	5: Cor	nsistency, Replicatio	n and Fault Tolerance	1
	29	23/03/2023	Introduction to replication and	
			consistency, Data-Centric	
			Consistency Models, Replica	

			Management	
	30	24/03/2023	Client- Centric Consistency Models,	
			Replica Management	
	31	29/03/2023	Fault Tolerance: Introduction,	
			Process resilience,	
	32	30/03/2023	Reliable client-server and group	
			communication, Recovery	
Module	6: Dis	stributed File System	ns and Name Services	·
	33	31/03/2023	Introduction, good features of DFS,	
	34	05/04/2023	File models, File Accessing models	
	35	06/04/2023	File-Caching Schemes, File	
			Replication	
	36	07/04/2023	Network File System(NFS)	Case Study
	37	08/04/2023	Hadoop Distributed File System and	Case Study
			Map Reduce	
	38	12/04/2023	Designing Distributed Systems:	
			Google Case Study.	
	39	13/04/2023	Introduction to Name services and	
			Domain Name System, Directory	
			Services	
	40	14/04/2020		Case Study
				Seminar