Practical Plan

Course Code: ECL 402 Subject Name: Controls and Instrumentation Laboratory Teacher in charge : Narayanan Kallingal Academic year and term : January – May 2023

Laboratory Objectives:

- 1. To determine performance of control systems
- 2. To determine stability of control systems
- 3. To understand the applications of instrumentation systems

Course Outcomes:

Upon completion of this course students will be able to:

Upon completion of this course students will be able to:

- ECL 402.1. Simulate performance of control Systems
- ECL 402.2. Analyze the stability of control systems
- ECL 402.3. Develop the applications of instrumentation systems

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2
ECL 402.1	-	-	-	-	3	-	-	-	-	-	-	-	-	-
ECL 402.2	-	3	-	-	-	-	-	-	-	-	-	-	-	-
ECL 402.3	-	-	3	-	-	-	-	-	-	-	-	I	-	-
Course Average	-	3	3	0	3	0	0	0	0	0	0	0	0	0

Justification of PO to CO mapping

ECL 402.1	PO5	Simulate performance of control Systems using suitable software tools
ECL 402.2	PO2	Analyze the stability of control systems
ECL 402.3	PO3	Develop the applications of instrumentation systems

CO Assessment Tools:

Course	Assessment Method					
Outcome	Direct Meth	Indirect Method (20%)				
	Lab	Oral	Semester End Examination	Course exit survey		
ECL 402.1	30 %	30%	40%	100%		
ECL 402.2	30 %	30%	40%	100%		
ECL 402.3	30 %	30%	40%	100%		

Rubrics for each assessment tool:

Assessment tool:	Rubrics		
Lab	Timeline (2)	Performance, Skill (4)	Understanding (4)

<u>Practical Plan</u> <u>SE ECS Semester IV</u>

CLASS			SE ECS Semeste	r IV	
Academic	e Term		Jan – May, 2023	(2022 – 23)	
Subject			Controls and Instrumentation Laboratory		
Term Work			25 Marks		
Oral/Practical			25 Marks		
		Day	Batch	Time	
		Tuesday	C	11.15 to 1.15	
Tir	ne Table	Wednesday	В	11.15 to 1.15	
		Thursday	A	9.00 to 11.00	
Friday			D	11.15 to 1.15	
Experim	ents				
Sr.No.		Title		Module	
1	DC positio	n control		1.1. Servomechanism	
2	LVDT			4.2. Displacement Transducers	
3	Temperatur	re Measurements – '	Thermo couple	4.3. Temperature Transducers	
4	Strain Gau	ge		4.2. Pressure Transducers	
5	Transient F	Response Analysis		2.1. Time Response Analysis	
6	Time Dom	ain Specifications		2.1. Time Response Analysis	
7	Type of Co	ontrol Systems		2.1. Time Response Analysis	
8	Root Locus	5		2.3. Stability Analysis	
9	Bode Plots			3.2. Stability Analysis	
10	PID Contro	oller		5. Suggested experiment	
Newly A	dded Exper	riments		1	
1	LVDT			4.2. Displacement Transducers	
2	Strain Gau	ge		4.2. Pressure Transducers	

Practical I	Plan				
Experiment N	<i>lo. 1</i> DC position control				
Batch	Dat	Dates			
-	Planned	Actual			
С	24-01-2023				
В	25 - 01 - 2023				
А	02 - 02 - 2023				
D	27 - 01 - 2023				
Experiment N	lo. 2 LVDT		· ·		
С	31 - 01 - 2023				
В	01 - 02 - 2023				
А	02-02-2023				
D	03-02-2023				
Experiment N	lo. 3 Temperature Measure	ments – Thermo couple	e		
C	07 - 02 - 2023				
В	08-02-2023				
А	09-02-2023				
D	10-02-2023				
Experiment N	<i>Io. 4</i> Strain Gauge				
С	14 - 02 - 2023				
В	15 - 02 - 2023				
А	16-02-2023				
D	17 - 02 - 2023				
Experiment No	p. 5 Transient Response Ai	nalysis			
С	21 - 02 - 2023				
В	22 - 02 - 2023				
А	23 - 02 - 2023				
D	24 - 02 - 2023				
Experiment No	o. 6 Time Domain Specifica	ations			
C	14 - 03 - 2023				
В	08-03-2023				
А	09-03-2023				

D	10-03-2023		
Experiment N	lo. 7 Type of Control Syst	ems	
С	21-03-2023		
В	15 - 03 - 2023		
А	16-03-2023		
D	17 - 03 - 2023		
Experiment N	<i>lo.</i> 8 Root Locus		
С	28-03-2023		
В	29-03-2023		
А	23-03-2023		
D	24 - 03 - 2023		
Experiment N	lo. 9 Bode Plots		
С	11 - 04 - 2023		
В	05 - 04 - 2023		
А	06 - 04 - 2023		
D	31 - 03 - 2023		
Experiment N	<i>lo. 10</i> PID Controller		
С	11-04-2023		
В	12 - 04 - 2023		
А	13-04-2023		
D	31 - 03 - 2023		

Term Work :-

At least 10 experiments covering entire syllabus of Controls and Instrumentation (ECC 403) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Additionally, an industrial visit to any relevant industry is compulsory. Experiments must be graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Submitted By	Approved By	
Prof. Narayanan Kallingal	i) Dr. D V Bhoir	Sign:
Sign:	ii) Prof. Shilpa Patil	Sign:
Date of Submission:	Date of Approval:	
Remarks by PAC (if any)	Date of Approval:	