Lesson Plan

Branch: FE Mechanical Engineering Semester: II

Year: 2022-23

Course Title: Engineering Mathematics II	SEE: 3 Hours – Theory
Total Contact Hours:	Duration of SEE: 3 Hours
31 (Theory) + 05 (Tutorial) = 36 Hours	
SEE Marks: 80 (Theory) + 20 (IA)	
Lesson Plan Author: Gajendra Singh	Date: 04/03/2023
Checked By:	Date: 02/06/2023

Prerequisites: Review of complex numbers – Algebra of complex number, Cartesian, Polar and Exponential form of complex number

Syllabus:

Prerequisite: Theory of integration and tracing of curves

1. Differential Equations of First Order and First Degree

- Exact differential Equations, Equations reducible to exact form by using integrating factors.
- Linear differential equations (Review), equation reducible to linear form, Bernoulli 's equation.
- 2. Linear Differential Equations with Constant Coefficients and Variable Coefficients of Higher Order
 - Linear Differential Equation with constant coefficient- complementary function, particular integrals of differential equation of the type f(D)y = X where X is e^{ax} , $\sin(ax + b)$, $e^{ax}V$, xV
 - Method of variation of parameters.
- 3. Beta and Gamma Function, Differentiation under Integral sign and Rectification
 - Beta and Gamma functions and its properties.
 - Differentiation under integral sign with constant limits of integration.
 - Rectification of plane curves (Cartesian and polar).
- 4. Multiple Integration-1
 - Double integration-definition, Evaluation of Double Integrals. (Cartesian & Polar)
 - Evaluation of double integrals by changing the order of integration.
 - Evaluation of integrals over the given region (Cartesian & Polar).
- 5. Multiple Integration-2
 - Evaluation of double integrals by changing to polar coordinates.
 - Application of double integrals to compute Area
 - Triple integration definition and evaluation (Cartesian, cylindrical and spherical polar coordinates).

6. Numerical solution of ordinary differential equations of first order and first degree, and, Numerical Integration

- Numerical solution of ordinary differential equation using (a) Euler 's method, (b) Modified Euler method, (c) Runge-Kutta fourth order method
- Numerical integration- by (a) Trapezoidal (b) Simpson 's 1/3rd (c) Simpson 's 3/8th rule (all with proof).

Course Outcomes (CO):

On successful completion of course learner will be able to:

- **FEC201.1**. Apply the concepts of first order and first degree differential equation to the problems in the field of engineering
- **FEC201.2.** Apply the concepts of higher order linear differential equation to the engineering problems
- **FEC201.3.** Apply concepts of Beta and Gamma function to solve improper integrals
- **FEC201.4.** Apply concepts of double integral of different coordinate systems to the engineering problems like area and mass
- **FEC201.5** Apply concepts of triple integral of different coordinate systems to the engineering problems and problems based on volume of solids
- **FEC201.6** Solve the differential equations and integrations numerically using SCILAB software to experimental aspect of applied mathematics.

CO-PO Mapping: (BL – Blooms Taxonomy, C – Competency, PI – Performance Indicator)

СО	BL	С	PI	РО	Mapping
FEC201.1.	3	1.1	1.1.1	PO1	3
Apply the concepts of first order and first degree		1.3	1.3.1		
differential equation to the problems in the field of		5.3	5.3.1	PO5	1
engineering					
FEC201.2.	3	1.1	1.1.1	PO1	3
Apply the concepts of higher order linear differential		1.3	1.3.1		
equation to the engineering problems		5.3	5.3.1	PO5	1
FEC201.3.	3	1.1	1.1.1	PO1	3
Apply concepts of Beta and Gamma function to solve		1.3	1.3.1		
improper integrals		5.3	5.3.1	PO5	1
FEC201.4.	3	1.1	1.1.1	PO1	3
Apply concepts of double integral of different coordinate		1.3	1.3.1		
systems to the engineering problems like area and mass		5.3	5.3.1	PO5	1
FEC201.5.	3	1.1	1.1.1	PO1	3
Apply concepts of triple integral of different coordinate		1.3	1.3.1		
systems to the engineering problems and problems based on volume of solids		5.3	5.3.1	PO5	1
FEC201.6.	1	5.3	5.3.1	PO5	1
Solve the differential equations and integrations					
numerically using SCILAB software to experimental aspect of applied mathematics.					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
FEC201.1	3				1							
FEC201.2	3				1							
FEC201.3	3				1							
FEC201.4	3				1							
FEC201.5	3				1							
FEC201.6					1							

Justification: PO1: The course provides the essential mathematical knowledge required in the fields of engineering and technology.

PO5: The course provides hands-on experience using SCILAB software to handle real-life problems.

	Test	Lab	Assignment	SEE (O)	SEE (T)	Course Exit
						Survey
FEC201.1	30%		10%		60%	100%
FEC201.2	30%		10%		60%	100%
FEC201.3	30%		10%		60%	100%
FEC201.4	30%		10%		60%	100%
FEC201.5	30%		10%		60%	100%
FEC201.6		100%				100%

CO Measurement Weightages for Tools:

Attainment:

CO FEC201.1: **Direct Method** $A_{FEC201.1D} = 0.3 * Test + 0.1 * Tutorial + 0.6 * SEE_Theory$ Final Attainment: $A_{FEC201.1} = 0.8 * A_{FEC201.1D} + 0.2 * A_{FEC201.1I}$ CO FEC201.2: **Direct Method** $A_{FEC201.2D} = 0.3 * Test + 0.1 * Tutorial + 0.6 * SEE_Theory$ **Final Attainment:** $A_{FEC201.2} = 0.8 * A_{FEC201.2D} + 0.2 * A_{FEC201.2I}$ CO FEC203.3: **Direct Method** $A_{FEC201,3D} = 0.3 * Test + 0.1 * Tutorial + 0.6 * SEE_Theoryy$ Final Attainment: $A_{FEC201.3} = 0.8 * A_{FEC201.3D} + 0.2 * A_{FEC201.3I}$ CO FEC204.4: **Direct Method** $A_{FEC201.4D} = 0.3 * Test + 0.1 * Tutorial + 0.6 * SEE_Theory$ **Final Attainment:** $A_{FEC201.4} = 0.8 * A_{FEC201.4D} + 0.2 * A_{FEC201.4I}$

CO FEC201.5: Direct Method $A_{FEC201.5D} = 0.3 * Test + 0.1 * Tutorial + 0.6 * SEE _ Theory$ Final Attainment: $A_{FEC201.5} = 0.8 * A_{FEC201.5D} + 0.2 * A_{FEC201.5I}$ CO FEC201.6: Direct Method $A_{FEC201.6D} = 1 * Scilab Practical$ Final Attainment: $A_{FEC201.6} = 0.8 * A_{FEC201.6D} + 0.2 * A_{FEC201.6I}$

Course Level Gap (if any): No Content beyond Syllabus: No

Lecture Plan (Theory):

Module	Contents	Hour s	Planned Date	Actual Date	Content Delivery Method	Remark
03	Beta and Gamma functions and its properties.	06	08/03/2023	08/03/2023	chalk and board	
	Beta and Gamma functions and its properties.		09/03/2023	09/03/2023	chalk and board	
	Differentiation under integral sign with constant limits of integration.		13/03/2023	09/03/2023	chalk and board	Got Extra lecture from Physics
	Differentiation under integral sign with constant limits of integration.		15/03/2023	13/03/2023	chalk and board	
	Rectification of plane curves (Cartesian and polar).		16/03/2023	15/03/2023	chalk and board	
	Rectification of plane curves (Cartesian and polar).		20/03/2023	15/03/2023	chalk and board	
04	Double integration- definition, Evaluation of Double Integrals. (Cartesian & Polar)	06	23/03/2023	16/03/2023	chalk and board	
	Double integration- definition, Evaluation of Double Integrals. (Cartesian & Polar)		27/03/2023	20/03/2023	chalk and board	Euphoria
	Evaluation of double		29/03/2023	23/03/2023	Smart	

	integrals by changing				Board,
	the order of				
	integration.				
	Evaluation of double				
	integrals by changing		02/04/2022	27/02/2022	Smart
	the order of		03/04/2023	27/03/2023	Board,
	integration.				
	Evaluation of				
	integrals over the		05/04/2022	02/04/2022	Smart
	given region		05/04/2023	03/04/2023	Board,
	(Cartesian & Polar).				
	Evaluation of				
	integrals over the		06/04/2022	05/04/2022	Smart
	given region		06/04/2023	05/04/2023	Board,
	(Cartesian & Polar).				
5	Evaluation of double	06			Smart
	integrals by changing		10/04/2023	06/04/2023	
	to polar coordinates.				Board,
	Evaluation of double				Smart
	integrals by changing		13/04/2023	10/04/2023	Board,
	to polar coordinates				
	Application of double				Smart
	integrals to compute		20/04/2023	13/04/2023	Board,
	Area				
	Application of double			20/04/2023	Smart
	integrals to compute		21/04/2023		Board,
	Area				
	Triple integration				
	definition and				
	evaluation		24/04/2023	21/04/2023	Smart
	(Cartesian, cylindrical		0_0	, , , , =•=•	Board,
	and spherical polar				
	coordinates).				
	Triple integration				
	definition and				
	evaluation		27/04/2023	24/04/2023	Smart
	(Cartesian, cylindrical			, , ,	Board,
	and spherical polar				
	coordinates).	06			
01	Exact differential	06	28/04/2023	27/04/2023	Smart
	Equations				Board,
	Equations reducible				Cmart
	to exact form by		04/05/2023	28/04/2023	Smart
	using integrating				Board,
	factors				
	Equations reducible				Cmart
	to exact form by		08/05/2023	04/05/2023	Smart
	using integrating				Board,
	factors				Cmart
	Linear differential		11/05/2023	08/05/2023	Smart
	equations				Board,

	Equation reducible to linear form		12/05/2023	11/05/2023	Smart Board,
	Bernoulli 's equation.		15/05/2023	12/05/2023	Smart Board,
02	Linear Differential Equation with constant coefficient- complementary function	07	18/05/2023	15/05/2023	Smart Board,
	Particular integrals of differential equation of the type $f(D)y = X$ where X is e^{ax} , $sin(ax + b)$, $e^{ax}V$, xV		19/05/2023	18/05/2023	Smart Board,
	Particular integrals of differential equation of the type $f(D)y = X$ where X is e^{ax} , $sin(ax + b)$, $e^{ax}V$, xV		22/05/2023	19/05/2023	Smart Board,
	Particular integrals of differential equation of the type $f(D)y = X$ where X is e^{ax} , $sin(ax + b)$, $e^{ax}V$, xV Method of variation of parameters.		25/05/2023	22/05/2023	Smart Board,
	Method of variation of parameters.		26/05/2023	22/05/2023	Smart Board,
	Method of variation of parameters.		01/06/2023	25/05/2023	Smart Board,
	Revision		02/06/2023	26/06/2023	Smart Board,

Lecture Plan (Tutorial):

The entire class will be divided into three batches. The common tutorial slot for all the batches is scheduled on Friday (online) 2.45 pm to 3.45 pm.

Module Contents Hours Planned Date Actual Date Remark

01	Differential equations: first order	01	24/04/2023	24/04/2023	Tutorial
02	Differential equations: higher order	01	11/05/2023	11/05/2023	Tutorial
03	Rectification, Beta and Gamma functions	01	15/05/2023	15/05/2023	Tutorial
04	Multiple integration 1	01	22/05/2023	22/05/2023	Tutorial
05	Multiple integration 2	01	22/05/2023	22/05/2023	Tutorial
06	SCILAB Practical	02	21/05/2023	21/05/2023	Scilab practical

Text Books:

- 1. Engineering Mathematics-II by G.V. Kumbhojkar, J. Jamnadas Publication
- 2. Engineering Mathematics-II by Dr. N.R. Dasre, TechKnowledge Publication

Reference Books:

- 1. Advance Engineering Mathematics by H.K. Dass, S. Chand & Company Limited
- 2. Advance Engineering Mathematics by Peter O' Neil, Cengage Learning

Evaluation Scheme

CIE Scheme Internal Assessment: 20 (Average of two tests)

Internal Assessment Scheme

	Module	Lecture Hours	No. of questions in			No. of questions in SEE
			Test 1	Test 2	Test 3*	JLL
1	Differential equations: first	06		02		04 (25 marks)
	order			(10 marks)		
2	Differential equations: higher	06		01		04 (25 marks)
	order			(5 marks)		
3	Beta and Gamma integrals,	06	03			04 (25 marks)
	Rectification		(10 marks)			
4	Multiple Integration 1	06	02			04 (25 marks)
			(10 marks)			
5	Multiple Integration 2	06		01		03 (20 marks)
				(05 marks)		

Note: Four to six questions will be set in the Test paper

Verified by:

Programme Coordinator