Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (West), Mumbai – 50.

2.6.2. Attainment of Programme outcomes and course outcomes are evaluated by the Institution.

Index

Sr.No	Content	Page No.
1	Process to Measure CO attainment	1-2
2	Process to Measure PO/PSO attainment	3-4
3	Sample Lesson Plan and Co Attainment Calculation- Computer Engineering	5-36
4	Po Attainment Calculation- Computer Engineering	37-39
5	Sample Lesson Plan and Co Attainment Calculation- Electronics and Computer Science	40-68
6	Po Attainment Calculation- Electronics and Computer Science	69-71
7	Sample Lesson Plan and Co Attainment Calculation- Production Engineering	72-77
8	Po Attainment Calculation- Production Engineering	78-82
9	Sample Lesson Plan and Co Attainment Calculation- Mechanical Engineering	83-94
10	Po Attainment Calculation- Mechanical Engineering	95-97
11	Sample Lesson Plan and Co Attainment Calculation- Artificial Intelligence and Data Science	98-121

Following are the processes followed by our institution for attainment of Programme outcomes and course outcomes.

Process to Measure CO attainment

Faculty member identifies tools required to measure CO attainment for each CO.

- Faculty member assigns weightage for each tool.
- Faculty member formulates equation to calculate attainment.
- Faculty member sets target level for CO attainment.
- DQAC verifies the method/tools/target value of CO attainment calculation and suggests tools, target values, etc. if required.
- Based on feedback from DQAC, faculty member makes appropriate changes.
- Faculty member collects the data throughout semester as per the tools selected for measuring CO attainment.
- Faculty member organizes data.
- Faculty member calculates CO and PO attainments for said course.
- Faculty member analyzes CO attainment to identify remedial actions if necessary.
- DQAC verifies attainment and suggests remedial action.
- Faculty member implements remedial measures during following year to improve CO attainment or sets new target value.

Flowchart representing process to calculate CO attainment

Process to Measure PO/PSO attainment

- DQAC identifies tools required to measure PO and PSO attainment for each PO and PSO.
- DQAC assigns weightage for each tool depending type of data, etc.
- DQAC formulates equation to calculate attainment.
- DQAC sets target level for PO and PSO attainment.
- DQAC finalizes the method/tools/target value of PO and PSO attainment calculation.
- PC assigns responsibility to few faculty members to collect data and designates one of the faculty member as coordinator.
- Respective faculty member collects the data at the end of semester/year as per the tools selected for measuring PO and PSO attainment.
- Respective faculty member organizes data.
- Coordinator calculates consolidated PO and PSO attainments.
- Coordinator analyzes PO and PSO attainments.
- DQAC verifies attainment and suggests remedial action.
- DQAC ensures implementation of remedial measures to improve PO and PSO attainment at department level or sets new target value during next academic year.

Flowchart representing process to calculate PO/PSO attainment

FR. Conceicao Rodrigues College Of Engineering Department of Computer Engineering S.E. (Computer) (semester IV) (2022-2023)

Branch: Computer Engineering Semester: IV semester

Year: 2022-2023

SEE: 3 Hours-Theory & Oral Examination		
Duration of SEE: 3 Hrs		
Date: 18/02/2023		
Date: 18 2 23		

Course Outcomes and Assessment Plan

Pr	rerequisite: Data structure concepts, Discrete structures	
Co	ourse Objectives:	
1	To provide mathematical approaches for Analysis of Algorithms	
2	To understand and solve problems using various algorithmic approaches	
3	To analyze algorithms using various methods	
	Analyze the running time and space complexity of algorithms.	
2	Describe, apply and analyze the complexity of divide and conquer strategy.	
3	Describe, apply and analyze the complexity of greedy strategy.	
4	Describe, apply and analyze the complexity of dynamic programming strategy.	
5	Explain and apply backtracking, branch and bound.	
6	Explain and apply string matching techniques.	

Syllabus:

Module		Detailed Contents	Hours
1		Introduction	8
	1.1	Performance analysis, space, and time complexity Growth of function, Big-Oh, Omega Theta notation Mathematical bac.kground for algorithm analysis. Complexity class: Definition of P, NP, NP-Hard, NP-Complete Analysis of selection sort, insertion sort.	
	1.2	Recurrences: The substitution method, Recursion tree method, Master method	
-		Divide and Conquer Approach	6
2	2.1	General method, Merge sort, Quick sort, Finding minimum and maximum algorithms and their Analysis, Analysis of Binary search.	
3		Greedy Method Approach	6

	3.1	General Method, Single source shortest path: Dijkstra Algorithm Fractional Knapsack problem, Job sequencing with deadlines, Minimum cost spanning trees: Kruskal and Prim's algorithms	
4		Dynamic Programming Approach	9
	4.1	General Method, Multistage graphs, Single source shortest path: Bellman Ford Algorithm All pair shortest path: Floyd Warshall Algorithm, Assembly-line scheduling Problem0/1 knapsack Problem, Travelling Salesperson problem, Longest common subsequence	
5		Backtracking and Branch and bound	6
	5.1	General Method, Backtracking: N-queen problem, Sum of subsets, Graph coloring	
	5.2	Branch and Bound: Travelling Salesperson Problem, 15 Puzzle problem	
6		String Matching Algorithms	4
	6.1	The Naïve string-matching algorithm, The Rabin Karp algorithm, The Knuth-Morris-Pratt algorithm	

Tex	tbooks:
1	T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to algorithms", 2 nd Edition, PHI Publication 2005.
2	Ellis Horowitz, Sartaj Sahni, S. Rajsekaran. "Fundamentals of computer algorithms" University Press.

Refe	References:						
	Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, "Algorithms", Tata McGraw-Hill Edition.						
2	S. K. Basu, "Design Methods and Analysis of Algorithm", PHI						

Course Outcomes:

Upon completion of this course students will be able to:

CSC 402.1 :Analyze the running time and space complexity of algorithms. (Analyze)

CSC 402.2 : Analyze the complexity of divide and conquer strategy. (Analyze)

CSC 402.3 : Analyze the complexity of greedy strategy. (Analyze)

CSC 402.4 : Analyze the complexity of dynamic programming strategy. (Analyze)

CSC 402.5 : Analyze backtracking, branch and bound strategy. (Analyze)

CSC 402.6 : Analyze string matching techniques. (Analyze)

Mapping of CO and PO/PSO

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

Program Specific Outcomes (PSOs)

Student will have ability to

PSO1: Develop Artificial Intelligence and Machine Learning based systems.

PSO2: Apply cyber security mechanisms to ensure the protection of Information Technology assets.

	PO1 (Engg Know)	PO2 (Ana)	PO3 (De sign)	PO4 (inve stiga)	PO5 (tools)	PO6 (engg Soci)	PO7 (Env)	PO8 (Eth)	PO9 (ind Team)	PO10 (comm.)	PO11 (PM)	PO12 (life Long)
CSC402.1	3	3		1	1				1			
CSC402.2	3	3	1	1	1				1			
CSC402.3	3	3	1	1	1				1			
CSC402.4	3	3	1	1	1				1			
CSC402.5	3	3	1	1	1				1			
CSC402.6	3	3		1	1				1			
Course To PO	3	3	1	1	1				1			

PSO1	PSO2
1	1
1	1
1	1
1	1
1	1
1	1
1	1
	PSO1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Mapping Justification:

Course Outcome	BL	Competency	Performance Indicator	PO	Mapp ing
CSC402.1	4	1.3 Demonstrate competence in engineering fundamentals	1.3.1 Apply engineering fundamentals	PO1	3
		1.4 Demonstrate competence in specialized engineering knowledge to the program	1.4.1 Apply theory and principles of Computer Science and engineering to solve an engineering problem		
		2.3 Demonstrate an ability to formulate and interpret a model	2.3.1 Able to apply computer engineering principles to formulate modules of a system with required applicability and performance.	PO2	3
		2.4 Demonstrate an ability to execute a solution process and analyze results	2.4.1 Applies engineering mathematics to implement the solution.		
		4.1 Demonstrate an ability to conduct investigations of technical issues consistent	4.1.2. Able to choose appropriate procedure/algorithm, dataset and test cases	PO4	1
		with their level of knowledge and understanding	4.1.3 Able to choose appropriate hardware/software tools to conduct the experiment.		
		5.1 Demonstrate an ability to identify/create modern engineering tools, techniques and resources	5.1.1 Identify modern engineering tools, techniques and resources for engineering activities	PO5	1
		9.2 Demonstrate effective individual and team operations communication, problem- solving, conflict resolution and leadership skills	9.2.1 Demonstrate effective communication, problem-solving, conflict resolution and leadership skills	monstrate effective PO9 lication, problem-solving,	1
CSC402	2.2 4	1.3 Demonstrate competence in engineering fundamentals	1.3.1 Apply engineering fundamentals	PO1	3
		1.4 Demonstrate competence in specialized engineering knowledge to the program	1.4.1 Apply theory and principles of Computer Science and engineering to solve an engineering problem		
		2.3 Demonstrate an ability to formulate and interpret a model	2.3.1 Able to apply computer engineering principles to formulate modules of a system with required applicability and performance.	PO2	3

		2.4 Demonstrate an ability to execute a solution process and analyze results	2.4.1 Applies engineering mathematics to implement the solution.		
		3.2 Demonstrate an ability to generate a diverse set of alternative design solutions	3.2.1 Explore design alternatives	PO3	1
		4.1 Demonstrate an ability to conduct investigations of technical issues consistent with their level of knowledge and understanding	 4.1.2. Able to choose appropriate procedure/algorithm, dataset and test cases 4.1.3 Able to choose appropriate hardware/software tools to conduct the experiment. 	PO4	1
		5.1 Demonstrate an ability to identify/create modern engineering tools, techniques and resources	5.1.1 Identify modern engineering tools, techniques and resources for engineering activities	PO5	1
		9.2 Demonstrate effective individual and team operations communication, problem- solving, conflict resolution and leadership skills	9.2.1 Demonstrate effective communication, problem-solving, conflict resolution and leadership skills	PO9	1
CSC402.3	4	1.3 Demonstrate competence in engineering fundamentals	1.3.1 Apply engineering fundamentals	POI	3
		1.4 Demonstrate competence in specialized engineering knowledge to the program	1.4.1 Apply theory and principles of Computer Science and engineering to solve an engineering problem		
		2.3 Demonstrate an ability to formulate and interpret a model	2.3.1 Able to apply computer engineering principles to formulate modules of a system with required applicability and performance.	PO2	3
		2.4 Demonstrate an ability to execute a solution process and analyze results	2.4.1 Applies engineering mathematics to implement the solution.		
		3.2 Demonstrate an ability to generate a diverse set of alternative design solutions	3.2.1 Explore design alternatives	PO3	1
		4.1 Demonstrate an ability to conduct investigations of technical issues consistent with their level of knowledge and understanding	 4.1.2. Able to choose appropriate procedure/algorithm, dataset and test cases 4.1.3 Able to choose appropriate hardware/software tools to conduct the experiment. 	PO4	1

	the second s				
10 - 90°		5.1 Demonstrate an ability to identify/create modern engineering tools, techniques and resources	5.1.1 Identify modern engineering tools, techniques and resources for engineering activities	PO5	1
		9.2 Demonstrate effective individual and team operations communication, problem- solving, conflict resolution and leadership skills	9.2.1 Demonstrate effective communication, problem-solving, conflict resolution and leadership skills	PO9	1
CSC402.4	4	1.3 Demonstrate competence in engineering fundamentals	1.3.1 Apply engineering fundamentals	PO1	3
		1.4 Demonstrate competence in specialized engineering knowledge to the program	1.4.1 Apply theory and principles of Computer Science and engineering to solve an engineering problem		
		2.3 Demonstrate an ability to formulate and interpret a model	2.3.1 Able to apply computer engineering principles to formulate modules of a system with required applicability and performance.	PO2	3
		2.4 Demonstrate an ability to execute a solution process and analyze results	2.4.1 Applies engineering mathematics to implement the solution.		
		3.2 Demonstrate an ability to generate a diverse set of alternative design solutions	3.2.1 Explore design alternatives	PO3	1
		4.1 Demonstrate an ability to conduct investigations of	4.1.2. Able to choose appropriate procedure/algorithm, dataset and test cases	PO4	1
		technical issues consistent with their level of knowledge and understanding	4.1.3 Able to choose appropriate hardware/software tools to conduct the experiment.		
10		5.1 Demonstrate an ability to identify/create modern engineering tools, techniques and resources	5.1.1 Identify modern engineering tools, techniques and resources for engineering activities	PO5	1
		9.2 Demonstrate effective individual and team operations communication, problem- solving, conflict resolution and leadership skills	9.2.1 Demonstrate effective communication, problem-solving, conflict resolution and leadership skills	PO9	1
por all and a second		1.3 Demonstrate competence	1.3.1 Apply engineering	POI	3

CSC402.5	4	in engineering fundamentals	fundamentals	Ι	
		1.4 Demonstrate competence in specialized engineering knowledge to the program	1.4.1 Apply theory and principles of Computer Science and engineering to solve an engineering problem		
		2.3 Demonstrate an ability to formulate and interpret a model	2.3.1 Able to apply computer engineering principles to formulate modules of a system with required applicability and performance.	PO2	3
		2.4 Demonstrate an ability to execute a solution process and analyze results	2.4.1 Applies engineering mathematics to implement the solution.		
		3.2 Demonstrate an ability to generate a diverse set of alternative design solutions	3.2.1 Explore design alternatives	PO3	1
		4.1 Demonstrate an ability to conduct investigations of technical issues consistent	4.1.2. Able to choose appropriate procedure/algorithm, dataset and test cases 4.1.3 Able to choose appropriate	PO4	1
		with their level of knowledge and understanding	hardware/software tools to conduct the experiment.		
		5.1 Demonstrate an ability to identify/create modern engineering tools, techniques and resources	5.1.1 Identify modern engineering tools, techniques and resources for engineering activities	PO5	1
		9.2 Demonstrate effective individual and team operations communication, problem- solving, conflict resolution and leadership skills	9.2.1 Demonstrate effective communication, problem-solving, conflict resolution and leadership skills	PO9	1
CSC402.6		1.3 Demonstrate competence in engineering fundamentals	1.3.1 Apply engineering fundamentals	PO1	3
		1.4 Demonstrate competence in specialized engineering knowledge to the program	1.4.1 Apply theory and principles of Computer Science and engineering to solve an engineering problem		
		2.3 Demonstrate an ability to formulate and interpret a model	2.3.1 Able to apply computer engineering principles to formulate modules of a system with required applicability and performance.	PO2	3
		2.4 Demonstrate an ability to execute a solution process	2.4.1 Applies engineering mathematics to implement the		

	and analyze results	solution.		
-	4.1 Demonstrate an ability to conduct investigations of technical issues consistent	4.1.2. Able to choose appropriate procedure/algorithm, dataset and test cases	PO4	1
	with their level of knowledge and understanding	4.1.3 Able to choose appropriate hardware/software tools to conduct the experiment.		
	5.1 Demonstrate an ability to Identify/create modern engineering tools, techniques and resources	5.1.1 Identify modern engineering tools, techniques and resources for engineering activities	PO5	1
-	9.2 Demonstrate effective individual and team operations communication, problem- solving, conflict resolution and leadership skills	9.2.1 Demonstrate effective communication, problem-solving, conflict resolution and leadership skills	PO9	1

CO Measurement Weightages for Tools:

		ent Tool weightage: 80%)	Assessment Tool Indirect(weightage=20%		
со	Test 1/2	Assignment 1/2	Quiz	SEE (T)	Course Exit Survey
CSC402.1	Test 1 20%	Assignment 1 10%	10%	60%	100%
CSC402.2	Test 1 20%	Assignment 1 10%	10%	60%	100%
CSC402.3	Test 1 20%	Assignment 10%	10%	60%	100%
CSC402.4	Test 2 20%	Assignment 2 10%	10%	60%	100%
CSC402.5	Test 2 20%	Assignment 2 10%	10%	60%	100%
CSC402.6	Test 2 20%	Assignment 2 10%	10%	60%	100%

CO Assessment Tools:

CSC402.1: Direct Methods(80%): Unit Test 1 + Assignment 1+Quiz+SEE(T)

CO1dm = 0.2T +0.1Assignment+0.1Quiz +0.6SEE(T) InDirect Methods(20%): Course exit survey COlidm CSC402.1 = 0.8*CO1dm + 0.2* CO1idm

Target Level 2.5

CSC402.2:Direct Methods(80%): Unit Test 1 + Assignment 1+Quiz+SEE(T)

CO2dm = 0.2T +0.1Assignment+0.1Quiz +0.6SEE(T) InDirect Methods(20%): Course exit survey

CO2idm

CSC402.2 = 0.8*CO2dm + 0.2* CO2idm

Target Level 2.6

CSC402.3: Direct Methods(80%): Unit Test 1 + Assignment 1+Quiz+SEE(T) CO3dm = 0.2T +0.1Assignment+0.1Quiz +0.6SEE(T) InDirect Methods(20%): Course exit survey CO3idm

CSC402.3 = 0.8*CO3dm + 0.2* CO3idm

Target Level 2.6

CSC404.4: Direct Methods(80%): Unit Test 2 + Assignment 2+Quiz+SEE(T) CO4dm = 0.2T +0.1Assignment+0.1Quiz +0.6SEE(T) InDirect Methods(20%): Course exit survey

CO4idm

CSC402.4 = 0.8*CO4dm + 0.2* CO4idm

Target Level 2.6

CSC404.5: Direct Methods(80%): Unit Test 2 + Assignment 2+Quiz+SEE(T) CO5dm = 0.2T +0.1Assignment+0.1Quiz +0.6SEE(T) InDirect Methods(20%): Course exit survey COSidm

CSC402.5 = 0.8*CO5dm + 0.2* CO5idm

Target Level 2.6

CSC404.6: Direct Methods(80%): Unit Test 2 + Assignment 2+Quiz+SEE(T) CO6dm = 0.2T +0.1Assignment+0.1Quiz +0.6SEE(T) InDirect Methods(20%): Course exit survey

CObidm

CSC402.6 - 0.8*CO6dm + 0.2* CO6idm

Target Level 2.5

\$ 22 2020

Course Level Gap VI anyl Content beyond Syllabus:

	-		Lecture Plan			
		Module	1: Introduction to Analysis of Algor	ithms		
No.	D Planned	ate Actual	Торіс	Hrs	Content Delivery Method	Remark
1	09-01-2023	09-01-2023	Introduction to analysis of algorithms: Introduction to subject and fundamentals of algorithms. What is meant by an efficient algorithm?	12	Chalk and board	
2	11-1-2023	11-01-2023	Efficiency of algorithms, Time and Space Complexities Fundamentals		Chalk and board	
3	12-1-2023	12-01-2023	Calculation of time complexity for code samples		Chalk and board	
4	16-1-2023	12-01-2023	Calculation of time complexity for code samples continued		Chalk and board	
5	18-1-2023	16-01-2023	Asymptotic notation big, Omega, Theta definition		Chalk and board	
6	19-1-2023	18-01-2023	Asymptotic notations examples prove that kind of sums		Chalk and board	
7	23-1-2023	18-01-2023	properties of Asymptotic notation, best worst and average case analysis of linear search and Binary search ,writing recurrence equation		Chalk and board	
.8	25-1-2023	19-01-2023	back substitution method of solving recurrence		Chalk and board	
9	30-1-2023	23-01-2023	recursion tree method		Chalk and board	
10	01-02-2023	25-01-2023	Space complexity for iterative and recursive programs		Chalk and board	
11	02-02-2023	30-01-2023	Masters method		Chalk and board	
12	06-02-2023	23-01-2023 (Lab)	Analysis of Insertion sort, Selection Sort and Optimized Bubble sort.		Chalk and board	
Cart of		Module 2	: Divide and Conquer Approach		2	
13	8-2-2023	01-02-2023	Merge Sort	4	Chalk and board	

No. of Concession, Name						
14	9-2-2023	02-02-2023	Merge sort time and space complexity		Chalk and board	
15	13-2-2023	06-02-2023	Quick Sort algorithm, Time and Space complexity		Chalk and board	
16	16-2-2023	08-02-2023	Randomized Quick Sort, Min Max Algorithm	1	Chalk and board	
		N	odule 3: Greedy Method			
17	20-2-2023	09-02-2023	General Method, Fractional Knapsack Problem	4	chalk and board, PPT.	
18	22-2-2023	13-02-2023	Job Sequencing with deadline		Chalk and board	
19	23-2-2023	15-02-2023	MST- Prims, MST – Kruskal		Chalk and board	
20	1-3-2023	16-02-2023	Dijkstra's Shortest Path Algorithm (SSSP)		Chalk and board, Visualization using Animation Video.	
		Modu	ile 4: Dynamic Programming			
21	2-3-2023	20-02-2023	General Method, 0/1 Knapsack	7	Chalk and board , Lab performanc e	
22	6-3-2023	23-02-2023	All pair shortest Path(Floyd Warshall Algo)		Chalk and board	
23	9-3-2023	23-02-2023	Single Source Shortest Path (Bellman Ford)		Chalk and board ,	
24	13-3-2023	8-3-2023	MultiStage Graph		Chalk and board	
25	15-3-2023	13-3-2023	Traveling Salesman Problem		Chalk and board	
26	16-3-2023	13-3-2023	Longest common subsequence		РРТ	
27	20-3-2023	15-03-2023	Assembly line scheduling, Examples on Assembly line scheduling		Chalk and board	
12. 4	-		cktracking and branch and bound2			

_						
28		15-03-2023	General Method of backtracking, a queen problem, Introduction to graph coloring	n 5	Chalk and board	
29	27-3-2023	16-03-2023	Graph Coloring program and state space tree construction, Examples for practice.		Chalk and board	
30	29-03-2023	18-03-2023	Sum of Subsets introduction, problem solving. Sum of subset program		Chalk and board	
31	3-4-2023	23-03-2023	General Method of branch and bound, 8 puzzle problem	1	Chalk and board	
32	5-4-2023	27-03-2023	15 puzzle problem, Traveling Salesman Problem		Chalk and board	
		Module	5: String Matching algorithms			
33	6-4-2023	3-4-2023	Naïve String Matching, Rabin Karp Algo	4	Chalk and board	
34	10-4-2023	6-04-2023	KMP Algo prefix and suffix concept		Chalk and board	
35	12-4-2023	10-4-2023	program on KMP algo		Chalk and board	
36	13-4-2023	12-04-2023	Revision and Doubt Solving		Chalk and board	
37	20-4-2023	15-04-2023	Revision and Doubt Solving		Chalk and board	
			Remedial Lectures			
38	03/05/2023	03/05/2023				
39						

Text Books:

- 1. T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to algorithms", 2nd Edition, PHI Publication 2005.
- 2. Ellis Horowitz, Sartaj Sahni, S. Rajsekaran. "Fundamentals of computer algorithms" University Press.

Reference Books:

- 1. Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, "Algorithms", Tata McGraw-Hill Edition.
 - 2. S. K. Basu, "Design Methods and Analysis of Algorithm", PHI

Web References:

- 1. https://nptel.ac.in/courses/106/106/106106131/
- 2. https://swayam.gov.in/nd1_noc19_cs47/preview
- 3. https://www.coursera.org/specializations/algorithms
- 4. https://www.mooc-list.com/tags/algorithms

FR. Conceicao Rodrigues College Of Engineering Department of Computer Engineering S.E. (Computer) (semester IV) (2022-2023)

Branch: Computer Engineering Course Title: Analysis of Algorithms (CSC402)

Year: 2022-2023 Semester:IV semester

Course Outcomes Target:

CSC 303.1	Analyze the running time and space complexity of algorithms.	Target level: 2.5
CSC 303.2	Analyze the complexity of divide and conquer strategy.	Target level: 2.5
CSC 303.3	Analyze the complexity of greedy strategy.	Target level: 2.7
CSC 303.4	Analyze the complexity of dynamic programming strategy.	Target level: 2.8
CSC 303.5	Analyze backtracking, branch and bound strategy.	Target level: 2.8
CSC 303.6	Analyze string matching techniques.	Target level: 2.8

CO Attainment of latest three years

00				
со	Course Outcomes	2022-23	2021-22	2020-21
CSC 303.1	Analyze the running time and space complexity of algorithms.	2.36	2.68	2.2
CSC 303.2	Analyze the complexity of divide and conquer strategy.	2.36	2.52	2.36
CSC 303.3	Analyze the complexity of greedy strategy.	2.84	2.52	2.36
CSC 303.4	Analyze the complexity of dynamic programming strategy.	2.84	2.52	2.36
CSC 303.5	Analyze backtracking, branch and bound strategy.	2.84	2.52	2.36
CSC 303.6	Analyze string matching techniques.	2.52	2.44	2.36

wegen

Practical Plan

Branch: Computer Engineering Semester: IV

Year: 2022-23

Course Title: Analysis of Algorithms (CSL401)	SEE: 2 Hours - Practical
Total Contact Hours: 20 Hours	
Practical Plan Author: Prajakta Dhamanskar (Div. A)	Date:
Checked By:	Date: 82 2028

Prerequisites: Basic knowledge of programming and data structure

Course Outcomes (CO):

On successful completion of course learner will be able to:

- CSL401.1 Implement the algorithms using different approaches.
- CSL401.2 Analyze the complexities of various algorithms.
- CSL401.3 Compare the complexity of the algorithms for specific problems,

Sr		
No		Mapped Co
1	WAP to implement Modified bubble sort, Insertion sort, Selection sort and derive its complexity.	CSC401.1
2	WAP to implement Linear search and binary search and derive its time complexity.	CSC401.2 CSC401.1
3	WAP to implement Quick sort, randomized quick sort and derive its complexity.	CSC401.2 CSC401.1
4	WAP to implement Merge sort and derive its complexity.	CSC401.2
5	WAP to implement MinMax Algorithm using Divide and Conquer.	CSC401.1 CSC401.2
5	WAP to implement fractional knapsack using greedy methods.	CSC401.1 CSC401.2
7*	WAP to implement Job Sequencing with Dec II	CSC401.1 CSC401.2
		CSC401.1 CSC401.2
_	WAP to implement Dijkstra's Shortest Path algorithm using greedy methods.	CSC401.1
	WAP to implement 0/1 knapsack using dynamic programming.	CSC401.2 CSC401.1
)	WAP to implement Bellman Ford Algorithm using Dynamic Programming.	CSC401.2
	WAP to implement Floyd Warshall algorithm.	CSC401.1 CSC401.2
		CSC401.1

List of Experiments

WAP to implement Longest Common Subsequence using Dynamic Programming.	CSC401.1 CSC401.2
WAP to implement the N queen problem using a backtracking approach.	CSC401.1 CSC401.2
WAP to implement sum of subset problem using backtracking approach	CSC401.1 CSC401.2
WAP to implement Naive String Matching and KMP String Matching Algorithm	CSC401.1 CSC401.2
Newly Added Experiments	
WAP to implement Job Sequencing with Deadlines using greedy methods.	CSC401.1 CSC401.2
	Programming. WAP to implement the N queen problem using a backtracking approach. WAP to implement sum of subset problem using backtracking approach WAP to implement Naive String Matching and KMP String Matching Algorithm Newly Added Experiments WAP to implement Job Sequencing with Deadlines using greedy

CO-PO Mapping: (BL – Blooms Taxonomy, C – Competency, PI – Performance Indicator)

СО	BL	С	PI	PO	Mapping
CSL401.1	3	1.4 Demonstrate competence in specialized engineering knowledge to the program.	1.4.1 Apply theory and principles of Computer Science and engineering to solve an engineering problem.	PO1	1
		2.3 Demonstrate an ability to formulate and interpret a model.	2.3.1 Able to apply computer engineering principles to formulate modules of a system with required applicability and performance.	PO2	1
		2.4 Demonstrate an ability to execute a solution process and analyze results.	2.4.1 Applies engineering mathematics to implement the solution.	PO2	1
CSL401.2	4	1.4 Demonstrate competence in specialized engineering knowledge to the program.	1.4.1 Apply theory and principles of Computer Science and engineering to solve an engineering problem.	PO1	1
		2.3 Demonstrate an ability to formulate and interpret a model.	2.3.1 Able to apply computer engineering principles to formulate modules of a system with required applicability and performance.	PO2	1
	2	2.4 Demonstrate an ability to execute a solution process and	2.4.1 Applies engineering mathematics to implement the solution.	PO2	1

		analyze results.			
CSL401.3	2	1.4 Demonstrate competence in specialized engineering knowledge to the program.	1.4.1 Apply theory and principles of Computer Science and engineering to solve an engineering problem.	PO1	1
		2.2 Demonstrate an ability to formulate a solution plan and methodology for an engineering problem	2.2.4 Compare and contrast alternative solution/methods to select the best method.	POI	1

an a site a site	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO12
CSL401.1	1	1										
CSL401.2	1	1										
CSL401.3	1	1										

	PSO1	PSO2
CSL401.1		
CSL401.2		
CSL401.3		

Course	rement Weightages	Direct Metho	ds (80%)		Indirect Method (20%)
Outcomes	Lab Performance	Post Lab Questions	Quizzes	End Sem Exam	Course exit survey
CSL401.1	30%	10%	10%	50%	100%
CSL401.2	30%	10%	10%	50%	100%
CSL401.3	30%	10%	10%	50%	100%

Attainment:

CSL401.1:

 $A_{CSL401.1D} = 0.3 * Lab Performance + 0.1 * Post Lab + 0.1 * Quizzes + 0.6 * SEE_O/Pr$ Direct Method Final Attainment: $A_{CSL401.1} = 0.8 * A_{CSL401.1D} + 0.2 * A_{CSL401.1I}$ CSL401.2:

 $A_{csl401.2D} = 0.3 * Lab Performance + 0.1 * Post Lab + 0.1 * Quizzes + 0.6 * SEE_O/Pr$ Direct Method Final Attainment: $A_{CSL401.2} = 0.8 * A_{CSL401.2D} + 0.2 * A_{CSL401.2I}$

CSL401.3:

Direct Method

 $A_{CSL401.3D} = 0.3 * Lab Performance + 0.1 * Post Lab + 0.1 * Quizzes + 0.6 * SEE_O/Pr$ Final Attainment: $A_{CSL401.3} = 0.8 * A_{CSL401.3D} + 0.2 * A_{CSL401.3I}$

Batch		Practical Session Plan	Remarks
	Planned	Actual	
Experiment N WAP to imple	<i>o. 1</i> ment Modified bubble so	rt, Insertion sort, Selection sort a	and derive its complexity
A	23/01/2023	23/01/2023	
D	25/01/2023	25/01/2023	
В	02/02/2023	02/02/2023	
С	27/01/2023	27/01/2023	
Experiment N WAP to imples		inary search and derive its time c	omplexity.
D	01/02/2023	01/02/2023	
B	02/02/2023	02/02/2023	
C	03/02/2023	03/02/2023	
Experiment N WAP to impler A	ment Quick sort, randomi 06/02/2023	zed quick sort and derive its con 06/02/2023	nplexity
D	08/02/2023	08/02/2023	
В	09/02/2023	09/02/2023	
C	10/02/2023	10/02/2023	
Experiment No WAP to impler	o. 4 ment Merge sort and deriv	e its complexity.	Sec. al and
A	13/02/2023	13/02/2023	
D	08/02/2023	08/02/2023	
В	16/02/2023	16/02/2023	and the second
С	17/02/2023	17/02/2023	6 (<u>8</u>
Experiment N WAP to imple	o.5 ment the MinMax algorith	m using greedy methods.	
A	13/02/2023	13/02/2023	
 Construction and the second sec	08/02/2023	08/02/2023	

	16/02/2023	16/02/2023	
C	17/02/2023	17/02/2023	
Experiment N WAP to imple	No.6 ment fractional knapsack	using greedy methods.	
A	20/02/2023	20/02/2023	
D	22/02/2023	22/02/2023	
В	23/02/2023	23/02/2023	
C.	24/02/2023	24/02/2023	
Experiment N WAP to imple	lo. 7 ment Job Sequencing wit	h Deadlines using greedy meth	ods.
Α	20/02/2023	20/02/2023	
D	22/02/2023	22/02/2023	
В	23/02/2023	23/02/2023	
С	24/02/2023	24/02/2023	
Experiment N WAP to imple	ment Dijkstra's Shortest	Path algorithm using greedy me	ethods.
Α	06/03/2023	06/03/2023	
D	08/03/2023	08/03/2023	
В	09/03/2023	09/03/2023	
С	10/03/2023	10/03/2023	
	- 0		
Experiment N VAP to imple	ment 0-1 Knapsack using		
Experiment N WAP to implet A	ment 0-1 Knapsack using 13/03/2023	13/3/23	
VAP to imple	ment 0-1 Knapsack using	13/3/23	
VAP to implet	ment 0-1 Knapsack using 13/03/2023	13/3/23	
A D	ment 0-1 Knapsack using 13/03/2023 15/03/2023	13/3/23	
A D B C	ment 0-1 Knapsack using 13/03/2023 15/03/2023 16/03/2023 17/03/2023	13 3 23 1573 123 16 3 23 18 3 23 19 3 23 19 3 23 19 3 23	ming.
A D B C	ment 0-1 Knapsack using 13/03/2023 15/03/2023 16/03/2023 17/03/2023	13 3 23 1573 123 16 3 23 16 3 23 17 3 23 rithm using Dynamic Program 20 3 23	nming.
A D B C VAP to implet	ment 0-1 Knapsack using 13/03/2023 15/03/2023 16/03/2023 16/03/2023 0. 10 ment Bellman Ford Algo	13 3 23 1573 123 16 3 23 1813123 1913123 rithm using Dynamic Program 20 3123 1573123	nming.
A D B C C VAP to impler A	ment 0-1 Knapsack using 13/03/2023 15/03/2023 16/03/2023 17/03/2023 0. 10 ment Bellman Ford Algo 20/03/2023	13 3 23 1573 123 16 3 23 16 3 23 17 3 23 rithm using Dynamic Program 20 3 23	nming.
A D B C C Xperiment N VAP to implet A D	ment 0-1 Knapsack using 13/03/2023 15/03/2023 16/03/2023 17/03/2023 o. 10 ment Bellman Ford Algo 20/03/2023 15/03/2023	13 3 23 1573 123 16 3 23 1813123 1913123 rithm using Dynamic Program 20 3123 1573123	nming.
A D B C C C C C C C C C C C C C C C C C C	ment 0-1 Knapsack using 13/03/2023 15/03/2023 16/03/2023 17/03/2023 0. 10 ment Bellman Ford Algo 20/03/2023 15/03/2023 23/03/2023 24/03/2023	$ \begin{array}{c} 3 3 23\\ 1573 123\\ 16 3 23\\ 16 3 23\\ 1713 123\\ 1713 123\\ 20 3123\\ 23 3123\\ 24 3123\\ 24 3123\\ 0 rithm using Dynamic Program $	
A D B C C C C C C C C C C C C C C C C C C	ment 0-1 Knapsack using 13/03/2023 15/03/2023 16/03/2023 17/03/2023 0. 10 ment Bellman Ford Algo 20/03/2023 15/03/2023 23/03/2023 24/03/2023	$ \begin{array}{c} 3 3 23\\ 573 23\\ 573 23\\ 6 3 23\\ 7 3 23\\ 17 3 23\\ 20 3 23\\ 23 3 23\\ 24 3 22\\ 0rithm using Dynamic Program 20 3 23\\ 20 3 23 \end{array} $	
A D B C Superiment N VAP to implet A D B C Superiment N VAP to implet A D B C Superiment N VAP to implet A D B C Superiment N VAP to implet	ment 0-1 Knapsack using 13/03/2023 15/03/2023 16/03/2023 16/03/2023 0. 10 ment Bellman Ford Algo 20/03/2023 15/03/2023 23/03/2023 24/03/2023 0. 11 ment Floyd Warshall Alg	$ \begin{array}{c} 3 3 23\\ 1573 123\\ 16 3 23\\ 16 3 23\\ 1713 123\\ 1713 123\\ 20 3123\\ 23 3123\\ 24 3123\\ 24 3123\\ 0 rithm using Dynamic Program $	

В	23/03/2023	23/3/23	
С	24/03/2023	24/3/23	
Experiment N	Vo. 12		
WAP to imple	ment Longest Common	Subsequence using Dynamic Programming	
A	27/03/2023	27/3123	
D	29/03/2023	29/3/23 minu at	
В	30/03/2023	30/03/23	
С	31/03/2023	24/3/23	
Experiment N	lo. 13		
		using back tracking approach.	
A	27/03/2023	2713123	
D	29/03/2023	29/3/23 at hom	
В	30/03/2023	30/03/22	
С	31/03/2023	31/03/23 contine	
Experiment N	0. 14		
		blem using back tracking approach.	
A	03/04/2023	314123	
D	05/04/2023	574128	
В	06/04/2023	614123	
C	07/04/2023	3-14123 at home	
Experiment N	o. 15		
WAP to impler	ment Naive String Match	ing and KMP String Matching algorithm.	
Α	10/04/2023	10/4/23	
D	12/04/2023	12/4/23	
В	13/04/2023	13/4/23	_

athome

Verified by:

Programme

Subject Expert

Evaluation Scheme

CIE Scheme

Internal Assessment: 20 (Average of two tests)

Internal Assessment Scheme

	Module	Lecture	No	. of questions	in	No. of questions in
		Hours	Test 1	Test 2	Test 3*	SEE
1	Introduction	8	01 (10 marks)	-		
2	Divide and Conquer Approach	6	01 (5 Marks)	-		
3	3 Greedy Method Approach		01 (5 Marks)	-		
4	Dynamic Programming Approach	9		01 (15 Marks)		
5	Backtracking and Branch and bound	6	-	01 (5 Marks)		
6	String Matching Algorithms	4		01 (5 Marks)		

Note: Four to six questions will be set in the Test paper

Verified by:	
	halpar 127
Programme Coordinator	Subject Expert

	FR. CONCEICAO RODRIGU	ES COLLE	GE OF EN	GINEER	NG, BA	NDRA	(WEST	1							
	Branc	ch : Com	outer Eng	ineering											
		Class:	SE, IV Sen	1								_			
	Sub: Ar	alysis of	Algorithm	ns CSC4	02								ALC: UN		
	Term	n : Jan 20	23 TO Ma	y 2023											
		_	Prajakta I												
		PO1	PO2	PO3	PO4	POS	PO	PO7	PO8 PO9	PO10	PO11	PO12	PSO	PSO2	9
CSC402.1	Analyze the running time and space complexity of algorithms.	3	3		1	1			1				1	1	2.36
CSC402.2	Analyze the complexity of divide and conquer strategy.	3	3	1	1	1	1		1				1	1	2.36
CSC402.3	Analyze the complexity of greedy strategy.	3	3	1	1	1			1				1	1	2.84
CSC402.4	Analyze the complexity of dynamic programming strategy.	3	3	1	1	1			1				1	1	2.84
CSC402.5	Analyze backtracking, branch and bound strategy.	3	3	1	1	1			1				1	1	2.84
CSC402.6	Analyze string matching techniques.	3	3		1	1			1				1	1	2.52
	TOTAL	18	18	4	6	6			6				6	6	2.52
	CO-PO MATRIX	3	3	1	1.5	1.5			1				1	1	
	PO ATTAINMENT	2.6266	2 6266	2 72					2.626				2.626	2000	

Valpernal

FR. CON	ICEICAO F	ODRIGU	ES COLLE	GE OF ENGINEERING, BANDRA (WEST)			
	19	Bran	ch : Com	outer Engineering			
			Class:	SE, IV Sem			
		Sub: A	nalysis of	Algorithms CSC402			
		Terr	m : Jan 20	23 TO May 2023			
			ncharge:	Prajakta Dhamanskar			
Target Level - CO1 Analyze the running time and space complexity of algorithms.	Weigh	tage			No of students	Attainm ent (in %)	Attainme t Level
UT 1 (Direct Method)	-	T					
60% of students will minimum score 60% marks	0.2			No. Of students scoring minimum 6 marks(out of 10) in Q.1 of UT1	21	29.57746	0
Assignment 1		1					
60% of students will minimum score 70% marks	0.2			No. Of students scoring minimum 7 marks(out of 10) in Assignment 1	50	70.52253	2
Quiz 1 (Direct Method)							
60% of students will minimum score 60% marks				No. Of students scoring minimum 6 marks(out of 10) In Quiz 1	22	30.98591	
Uni. End Semester Theory Examination							
60% of students will minimum score 60% marks	0.4			No. Of students scoring minimum 48 marks(out of 80)	58	81.69014	3
Uni. End Semester Oral Examination							
60% of students will minimum score 60% marks	0.2			No. Of students scoring minimum 15 marks(out of 25)	65	91.54929	3
(Indirect Method)			1	Total Students	71		
Course Exit Survey					/1		
8% students strongly aggree and aggre	1			Total respondents of Course exit Survey: 62			
arget Level - percentages	Test	Assign	Quiz	End Sem(in percentage)		98%	3
	60 to 70	60 to 70	60 to 70	60 to 70	Law/1)		
	71-80	71-80	71-80	71-80	Low(1)		
5	>80	>80	>80	>80	Moderate(2)		
tainment - Direct Method	2.2			0.2*Test1+0.2*assignment1+0.1*Quiz 1+0.25*End Set	ubstantial(3		
				2.2	m Marks+0	.25*Oral	
verall Attainment	2.36			Overall Attainment=(0.8*Direct Method Attainment			

FR. CONC	EICAO RO	DRIGUE	S COLLEG	E OF ENGINEERING, BANDRA (WEST)			
		Branch	h : Comp	uter Engineering			
			Class: Si	E, IV Sem			
		Sub: Ana	alysis of A	Ngorithms CSC402			
		Term	: Jan 202	13 TO May 2023			
	F	aculty In	charge: P	rajakta Dhamanskar			
Target Level - CO2 Analyze the complexity of divide and conquer strategy.	Weight age				No. of Stude nts		Level
UT 1 (Direct Method)			1				
60% of students will minimum score 60% marks	0.2			No. Of students scoring minimum 3 marks(out of 5) in Q.2 of UT1	22	30.985	C
Assignment 1 (Direct Method)		1	1				
60% of students will minimum score 60% marks	0.2			No. Of students scoring minimum 6 marks(out of 10) in Assignment 2	50	70.522	2
Uni. End Semester Theory Examination	1	1	1				
60% of students will minimum score 60% marks	0.3	1	1	No. Of students scoring minimum 48 marks(out of 80)	58	81.690	2
Uni. End Semester Oral Examination	1					81.090	
60% of students will minimum score 60% marks	0.3			No. Of students scoring minimum 15 marks(out of 25)	CE	91.549	
(Indirect Method)		1	1	Total Students	71	91.549.	3
Course Exit Survey		1			/1		
98% students strongly aggree and aggre	1		I	Total respondents of Course exit Survey: 62			
Target Level - percentages	Test	Assign	Quiz	End Sem(in percentage)		98%	3
	60 to 70	60 to 70	60 to 70	60 to 70			
	71-80	71-80	71-80		Low(1)		
	>80	>80	>80	>80	Modera		
Attainment - Direct Method	2.2			0.2*Test1+0.2*assignment1+0.3*End Sem Marks+0.3*Oral	Substar	ntial(3)	
				2.2			
Overall Attainment	2.36			Overall Attainment=(0.8*Direct Method Attainment +(

FR. CC	NCEICA	O RODRIG	GUES COL	LEGE OF ENGINEERING, BANDRA (WEST)			
				mputer Engineering			
				s: SE, IV Sem			
		Sub		of Algorithms CSC402			
				2023 TO May 2023			
			Contract Contraction	e: Prajakta Dhamanskar			
Target Level - CO3 Analyze the complexity of greedy strategy.	Weigh tage				No. of Students	Attainme nt (in %)	Leve
UT 1 (Direct Method)							
60% of students will minimum score 60% marks	0.2			No. Of students scoring minimum 3 marks(out of 5) in Q.3 of UT1	64	90.140845	3
Assignment 1 (Direct Method)							
60% of students will minimum score 60% marks	0.2			No. Of students scoring minimum 6 marks(out of 10) in Assignment 1	50	70.5225	2
Uni. End Semester Theory Examination				34 			
60% of students will minimum score 60% marks	0.3			No. Of students scoring minimum 48 marks(out of 80)	58	81.690140	3
Uni. End Semester Oral Examination							
60% of students will minimum score 60% marks	0.3			No. Of students scoring minimum 15 marks(out of 25)	65	91.549295	3
(Indirect Method)					71		
Course Exit Survey							
98% students strongly aggree and aggree	1			Total respondents of Course exit Survey: .62		98%	3
Target Level - percentages	Test	Assign	Quiz	End Sem(in percentage)			
	60 to 70	60 to 70	60 to 70	60 to 70	Low(1)		
	71-80	71-80	71-80	71-80	Moderate(2)	
	>90	>90	>90	>90	Substantial	(3)	
Attainment - Direct Method	2.8			0.2*Test1+0.2*assignment1+0.3*End Sem Marks+0.	3*Oral		
				2.8			
Overall Attainment	2.84			Overall Attainment=(0.8*Direct Method Attain Attainment)	iment +0.2	*Indirect Me	thod

FI	R. CONCEIC	AO RODR	IGUES CO	LLEGE OF ENGINEERING, BANDRA (WEST)				
		В	ranch : Co	omputer Engineering			1.73	
			Clas	ss: SE, IV Sem			-	
		Sub	: Analysis	of Algorithms CSC402				
				2023 TO May 2023				
				e: Prajakta Dhamanskar				
Target Level - CO4 Analyze the complexity of Weightage dynamic programming strategy.				No. of Students		Leve		
UT 2 (Direct Method)						(in %)		
60% of students will minimum score 60% marks	0.2			No. Of students scoring minimum 6 marks(out of 10) in Q.1 of UT2	52	73.2394	2	
Assignment 2 (Direct Method)								
60% of students will minimum score 70% marks	0.2			No. Of students scoring minimum 7 marks(out of 10) in Assignment 2	65	91.5492	3	
Uni. End Semester Theory Examination				resignment a				
60% of students will minimum score 60% marks	0.3			No. Of students scoring minimum 48 marks(out of 80)	58	01 0001	-	
Uni. End Semester Oral Examination					58	81.6901	3	
60% of students will minimum score 60% marks	0.3			No. Of students scoring minimum 15 marks(out of 25)	65	01 5 400		
(Indirect Method)				Total Students	71	91.5492	3	
Course Exit Survey								
98% students strongly aggree and aggree	1			Total respondents of Course exit Survey: 62		0.001	-	
Farget Level - percentages	Test	Assign	Quiz	End Sem(in percentage)		98%	3	
	60 to 70	60 to 70	60 to 70	60 to 70	Low(1)			
	71-80	71-80	71-80	71-80	Moderate(2			
	>80	>90	>90	>90				
ttainment - Direct Method	2.8			Substantial(3) 0.25*Test2+0.25*assignment2+0.25*End Sem Marks+0.25*Oral				
				2.8		r		
verall Attainment	2.84			Overall Attainment=(0.8*Direct Method Attainment +0.2 Attainment)	2*Indirect M	lethod		

TL WALL	CAU KUI	KIGUES	COLLEGE	OF ENGINEERING, BANDRA (WEST)			
		Branch :	Compute	er Engineering			
		(Jass: SE, I	IV Sem			
	5	iub: Analy	rsis of Alg	porithms CSC402			
		Term : .	lan 2023 '	TO May 2023			
			arge: Praj	iakta Dhamanskar			
Target Level - CO5 Analyze backtracking, branch and bound strategy.	Weight age				No. of Students	1873 See (1871 1885 See	Leve
UT 2 (Direct Method)						1	
60% of students will minimum score 60% marks	0.2	2		No. Of students scoring minimum 3 marks(out of 5) in Q.2 of UT2	40	56.3380	2
Assignment 2 (Direct Method)							
60% of students will minimum score 70% marks	0.2	2		No. Of students scoring minimum 7 marks(out of 10) in Assignment 2	65	91.5492	3
Uni. End Semester Theory Examination		1	-				
60% of students will minimum score 60% marks	0.3	1		No. Of students scoring minimum 48 marks(out of 80)	58	81.6901	3
Uni. End Semester Oral Examination		1	1				
60% of students will minimum score 60% marks	0.3			No. Of students scoring minimum 15 marks(out of 25)	65	91.5492	3
(Indirect Method)				Total Students	71		
Course Exit Survey							
98% students strongly aggree and aggree	1		1	Total respondents of Course exit Survey: 62		98%	3
Farget Level - percentages	Test	Assign	Quiz	End Sem(in percentage)		3076	3
	60 to 70	60 to 70	60 to 70	60 to 70	Low(1)		
	71-80	71-80	71-80	71-80	Moderate(2)	
	>80	>90	>90	>90	Substantial(
tainment - Direct Method	2.8			0.2*Test1+0.2*assignment1+0.3*End Sem Marks+0.3		-1	
				2.8			
verall Attainment	2.84			Overall Attainment=(0.8*Direct Method Attainment Attainment)	+0.2*Indire	ct Meth	od

PR. CL	INCEICAC	J KUDKIG	OF2 COLL	EGE OF ENGINEERING, BANDRA (WEST)			
		Bra	nch : Corr	nputer Engineering			
			Class:	SE, IV Sem			
		Sub:	Analysis o	f Algorithms CSC402			
		Te	rm : Jan 2	023 TO May 2023			
	1	Faculty	Incharge:	Prajakta Dhamanskar			-
Target Level - CO6 Analyze string matching techniques.	Weigh tage			No. of Students		Leve	
UT 2 (Direct Method)						(in %)	
60% of students will minimum score 60% marks	0.2			No. Of students scoring minimum 3 marks(out of 5) in Q.3 of UT2	18	25.352	0
Assignment 2 (Direct Method)							
60% of students will minimum score 70% marks	0.2			No. Of students scoring minimum 7 marks(out of 10) in Assignment 2	65	91.549	3
Uni. End Semester Theory Examination			1	and an end a			
60% of students will minimum score 60% marks	0.3			No. Of students scoring minimum 48 marks(out of 80)	58	81.690	3
Uni. End Semester Oral Examination							
60% of students will minimum score 60% marks	0.3			No. Of students scoring minimum 15 marks(out of 25)	65	91.549	3
(Indirect Method)		1		Total Students	71		
Course Exit Survey			1				
98% students strongly aggree and aggree	1		1	Total respondents of Course exit Survey: 62		98%	3
Target Level - percentages	Test	Assign	Quiz	End Sem(in percentage)		30/0	
	60 to 70	60 to 70	60 to 70	60 to 70	Low(1)		
	71-80	71-80	71-80	71-80	Moderate(2)	
	>80	>90	>90	>90	Substantial		
ttainment - Direct Method	2.4			0.25*Test1+0.25*assignment1+0.25*End Sem Marks			
				2.4			
verall Attainment	2.52			Overall Attainment=(0.8*Direct Method Attainment Attainment)	t +0.2*Indi	ect Me	thod

										9							
	FR. CONCEICAG) ROD	RIGU	ES CO	LLEGE	OF ENG	INEER	ING.	BAND	RA (W	FST)						
And the second sec			Brand	ch : Co	mpute	r Engin	eerin	g									
					ss: SE, I												
		Sub	o: Anal	ysis o	f Algori	ithms L	ab CS	L401									
			Tern	n : Jar	2023 1	го Мау	2023										
																со	
(M) 1995	Dhamanskar	P01	PO2	PO3	PO4	PO5	PO6	PO7	POS	PO9	PO10	PO11	PO12	DCO1		Attain ment	
LO	CO Statements										1010	1011	PUIZ	PS01	PSOZ	ment	Target
CSL401.1	Implement the algorithms using different app	3	3	3	1	1		-	-	1							
CSL401.2	Analyze the complexities of various algorithm		3	3	1	1				-				1	1	2.36	2.5
CSL401.3	Compare the complexity of the algorithms	-	<u> </u>		-			-		1				1	1	2.36	2.5
	for specific problems.	3	3	3	1	1				1				1	1	1.96	2.5
	TOTAL	9	9	9	3	3				3				3	2	1.50	2.5
	CO-PO MATRIX	1000	3	3	1	1				1				1	1		<u> </u>
	PO ATTAINMENT	2.22	2.22	2.22	2.226	2.226	2			2.226				2.226	2.226		

FR. CONCEIC	AO RODR	IGUES CO	LLEGE OF	ENGINEERING, BANDRA (WEST)								
	E	Branch : C	omputer	Engineering								
		Cla	ss: SE, IV	Sem								
	Su	b: Analysi	s of Algo	rithms CSC402								
		Term : Ja	n 2023 TC) May 2023								
···		Ity Inchar	ge: Prajal	kta Dhamanskar								
	Weight age				No of stud ents	Attain ment (in %)	Attainm ent Level					
Lab Work (Direct Method)												
60% of students will minimum score 60% marks	0.2			No. Of students scoring minimum 6 marks(out of 10) in Lab	68	95.774	3					
Post Lab Questions (Direct Method)												
60% of students will minimum score 70% marks	0.2			No. Of students scoring minimum 1.4 marks(out of 2) in PostLab	36	50.704	0					
Quiz 1 (Direct Method)												
60% of students will minimum score 60% marks	0.1			No. Of students scoring minimum 6 marks(out of 10) in Quiz 1, 2, 3 and 4	43.25	60.915	1					
Uni. End Semester Prtactical Examination												
60% of students will minimum score 60% marks	0.5			No. Of students scoring minimum 15 marks(out of 25)	65	91.549	3					
(Indirect Method)				Total Students	71							
Course Exit Survey					1							
98% students strongly aggree and aggre	1			Total respondents of Course exit Survey: .62		98%	3					
Target Level - percentages	Lab	Postlab	Quiz	End sem Practical Exam(in percentage)								
	60 to 70	60 to 70	60 to 70	60 to 70	Low(1)						
	71-80	71-80	71-80	71-80	Mode	erate(2)						
	>80	>80	>80	>80	Subst	tantial(3	3)					
Attainment - Direct Method	2.2			0.2*Lab+0.2*Postlab+0.1*Quiz+0.5*End Sem	Practic	al Exam						
				2.2	Τ							
Overall Attainment	2.36			Overall Attainment=(0.8*Direct Method Attai Method Attainment)	Overall Attainment=(0.8*Direct Method Attainment +0.2*Indirect Method Attainment)							

FR. CONC	EICAO R	ODRIGUES	COLLEGE	OF ENGINEERING, BANDRA (WEST)			
		Branch	: Comput	er Engineering			
			Class: SE,	IV Sem			
		Sub: Ana	lysis of Alg	gorithms CSC402			
		Term	: Jan 2023	TO May 2023			
			harge: Pra	jakta Dhamanskar			
Target Level - LO2 Analyze the complexities of various algorithms.	Weight	age			No of stude nts	Attain ment (in %)	Attainn ent Level
Lab Work (Direct Method)							
60% of students will minimum score 60% marks	0.2	2		No. Of students scoring minimum 105 marks(out of 150 for 15 experiments) in Lab	68	95.774	
Post Lab Questions (Direct Method)		_	1				
60% of students will minimum score 70% marks	0.2	2		No. Of students scoring minimum 1.4 marks(out of 2) in PostLab	36	50.704	
Quiz 1 (Direct Method)							
60% of students will minimum score 60% marks	0.1			No. Of students scoring minimum 6 marks(out of 10) in Quit 1, 2, 3 and 4	43.25	60.915	
Uni. End Semester Prtactical Examination							
60% of students will minimum score 60% marks	0.5			No. Of students scoring minimum 15 marks(out of 25)	65	91.549	
(Indirect Method)				Total Students	71		
Course Exit Survey			1				
98% students strongly aggree and aggre	1			Total respondents of Course exit Survey: .62		98%	
Target Level - percentages	Lab	Postlab	Quiz	End sem Practical Exam(in percentage)		5070	
	60 to 7	60 to 70	60 to 70	60 to 70	Low(1)		
	71-80	71-80	71-80	71-80	Moder		
	>80	>80	>80	>80			
Attainment - Direct Method	2.2			0.2*Lab+0.2*Postlab+0.1*Quiz+0.5*End Sem Pr	actical Ex	ntial(3) œm	
Overall Attainment				2.2			
	2.36			Overall Attainment=(0.8*Direct Method Att +0.2*Indirect Method Attainment)	ainmer	nt	

FR. CONCEIO	CAO RO	DRIGUES	COLLEG	E OF ENGINEERING, BANDRA (WEST)			
				iter Engineering			
			Class: SE	, IV Sem			
		Sub: Anal	ysis of A	Igorithms CSC402			
		Term :	Jan 202	3 TO May 2023			
Target Level - LO3 Compare the complexity of the			arge: Pr	rajakta Dhamanskar			
algorithms for specific problems.	Weig	htage			No of students	nme nt (in	Attair ment Level
Post Lab Questions (Direct Method)			1			%)	
60% of students will minimum score 70% marks	0.	3		No. Of students scoring minimum 1.4 marks(out of 2) in PostLab of Exp 4 and 5	37	52.112	C
Quiz 1 (Direct Method)	1		1	interceptual of 2) in Postcal of exp 4 and 5			
60% of students will minimum score 60% marks	0.1	2		No. Of students scoring minimum 6 marks(out of 10) in Quiz 1, 2, 3 and 4	43.25	60.919	1
Uni. End Semester Prtactical Examination		-					
60% of students will minimum score 60% marks	0.5	5		No. Of students scoring minimum 15 marks(out of 25)	65	91.549	3
(Indirect Method)	1	1	1	Total Students			
Course Exit Survey					71		
98% students strongly aggree and aggre	1			Total respondents of Course exit Survey: .62		98%	3
Target Level - percentages	Lab	Postlab	Quiz	End sem Practical Exam(in percentage)		5076	
	60 to 7	60 to 70	60 to 7	60 to 70	Low(1)		
	71-80	71-80	71-80	71-80	Moderat	0(2)	
	>80	>80	>80	>80	Substant		
ttainment - Direct Method	1.7			0.2*Lab+0.2*Postlab+0.1*Quiz+0.5*End Sem Prac	tical Fram	101(3)	
				1.7			
verall Attainment	1.96			Overall Attainment=(0.8*Direct Method Atta Method Attainment)	inment +	0.2*Inc	lirect

FR. Conceicao Rodrigues College of Engineering Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Computer Engineering															
CO-PO-Attainment of Computer Deartment (2022-23)			Contrastorian -	and the second second		-								for 1 der o	1 (A)
	PO1	PO2	PO3	PO4	PO5 P	906	PO7	P	08	PO9	PO10 P	011 PO	12 PSO1	PSO2	CSC.
	2.02266666														
Engineering Physics - I (FEC102)	3												-		
Engineering Chemistry - I (FEC103)	2.468														
	2.6366666612.7	731666667 2	.699333333										1.		
Basic Electrical & Electronics Engineering (FEC105)	2.6	2.54													
ngineering Mathematics-II FEC201	2.712														
Engineering Physics-II (FEC202)	3														
Engineering Chemistry -II (FEC203)	2.73														
Engineering Graphics (FEC204)	3	3	3								3				
-Programming FEC205											3				1
BASIC WORKSHOP PRACTICE 1 & 2 [FEL105 & FEL206]	2.9		2.9		2.9	2,9				2.9					
NGINEERING MECHANICS LAB	2.89	2.89	2.89												_
NGINEERING GRAPHICS LABS	3	3	3		3						3				
engineering Mathematics - III (CSC301) (C205) SE Computer A 2020-2021)	3														
Discrete Structures and Graph Theory CSC302 -(C205) SE COMPS A 2020-2021)	2.63	2.63		2.63									2.63	2.63	
ata Structures CSC303- (C203) SE COMPS A	2.47	2.7	2.76							2.76		2.76	2.76	2.47	2.47
igital Logic and Computer Architectures(CSC304)-(C206) SE COMPS A	3	3	3		3									3	
Computer Graphics(CSC305) SE COMPS A	2.78	2.78	2.62		2.62	ţ.	1		2.44	2.44	2.44	2.44	2.44	2.78	2.44
bject Oriented Programming Methodology (CSL304) -(C202) SE OMPS A	2,426666667		2,466666667							2,466667					
Aini Project CSM 301 SE COMPS A	2.84	2.84	2,68	3	2,68			3		2.84	2.68	2.8		2.84	2.84
ingineering Mathematics III (CSC301)- (C201) SE COMPS B	3					1		-							
Discrete Structures and Graph TheoryCSC302 -(C205) SE COMPS B	3	3	3				1						3		
Data Structures CSC303- (C203) SE COMPS B	2.7	2.84	2.84							2.84		2.84	2.84	2.7	2.7
	2.1	2.04	2.01			1000-0		-							-
Digital Logic and Computer Architectures(CSC304)-(C206) SE COMPS B	3	3	3		3	100				1			1	3	
Computer Graphics(CSC305) SE COMPS B	2.6	2.6	2.6	2.6	2.6		1				2.8		2.6	2.6	
Dbject Oriented Programming Methodology (CSL304) -(C202) SE		2.0	2,4666666667				30.			2.466667		-			
OMPS B	2.42666666	2.84	2.40000007	3	2.68			3		2.84	2.68	2.8		2.84	2.84
1ini Project CSM 301 SE COMPS B	2.84	2.04	2.00		2.00	-	-			2.04	2.00				
ngineering Mathematics -4 CSC401.1	3		0.40				-	-		2.12				2.26	2.2
nalysis of Algorithms CSC402- (C212) SE COMPS A	2.26		the second se	to share the	0.00	1		3		2.12				3	
atabase Management System CSC403 -(C213) SE COMPS A	2.7		1			_	-	3		2.68			2.68	2.68	
perating System CSC404 SE COMPS A	2.68					_				2.08			2.8325	2.758	2.8
ICROPROCESSOR(CSC405)SE COMPS A		2.843333333			2.	-	-					2.4		2.553333	2.0
pen Source Technology Lab CSL405 SE COMPS A	2.55333333	2.543333333			2.473	_	2.4	2.4	2.4	2.4				2.5555555	£.
SM 401 MINI Project SE COMPS A	2.65	2.65	2.	8 2,6	3 2.	.9			3	2.833333	1	1.325	2.075	2.05	
ngineering Mathematics IV* (CSC401)-(C211) SE COMPS B	3													2.26	2
nalysis of Algorithms CSC402- (C212) SE COMPS B	2.26	2.25	2.1	2						2.1		1	1 0 177000		2.546
atabase Management System CSC403 -(C213) SE COMPS B	2,568		2.5	8	2.7	72	1			2.59	2 2.47733	3 2.47733		2.568	2.040
perating System CSC404 SE COMPS B (Mahendra)	2.68				8 2.6	68				2.6	8	1	2.68	2.68	-
		5 2.84333333				2.8							2,8325		2
MICROPROCESSOR(CSC405)SE COMPS B Open Source Technology Lab CSL405 SE COMPS B	2.55333333				2.47		2.4	2.4				1 0	g Departme	2.553333	1

2.4 Head of Computer Engineering Department
 Fr. Conceicao Rodrigues College of Engineering
 Fr. Agnel Ashram, Bandstand, Bandra (W). Mumbai

FR. Conceicao Rodrigues College of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Computer Engineering

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	PO9	PO10	PO11	PO12	PSO1	PSO2
CSM 401 MINI Project SE COMPS B (2020-21)	2.65	2.65	2.8	2.8	2.9			3	2.833333		2.825	2.825	2.65	2.8
Theoretical Computer science CSC501-(C301) TE COMPS A (2021-22)	2.85	2.85	2.86	2.66						2.8		2.8	2.85	2,85
Software Enggineering CSC502 TE COMPS A	2.83	2.83	2.84		2.84					2.8		2.8	2.84	2.82
Computer Network CSC503 TE COMPS A	2,896	2,94	2.9		2.9					2.0		2.0	2.896	2.02
Data Warehousing and Mining CSC504 TE COMPS A	3	3	3		3				3	3		3	3	3
Probabilistic Graphical Model CSDLO5011 (Department level Elective) csdl501	3	3	3										3	3
Internet Programming CSDLO5012 (Department level Elective) CSDL502	3	613	3		3								3	
Professional Communication and Ethics-2 CSL504 TE COMPS A						3		3	3	3				
Mini Project A CSM 501 TE COMPS A	2.333333333	2.25	3		3			3	3	3	2.625	2,666667	3	3
Theoretical Computer science CSC501-(C301) TE COMPS B	2.8	2.8	2.85	2.6					-	2.8	2.020	2.75	2,75	2.85
Software Enggineering CSC502 TE COMPS B	2.45	2.575	2.5	2.376	2.12				2.384	2,59	2.6	2.6	2.384	2.384
Computer Network CSC503 TE COMPS B	2.555	2.523	2.465	2.070	2,685							2,0	2,56	2.55
Data Warehousing and Mining CSC504 TE COMPS B	2,733333333		2.733333333	2.733333								2,733333		2.00
Professional Communication and Ethics-2 CSL504 TE COMPS B				2.100000	2.700000	3	-	3	3	3		2.100000	2.100000	
Mini Project A CSM 501 TE COMPS B	2.333333333	2.25	3		3			3		3	2.625	2.666667	3	1
System Programmimg and Compiler construction CSC 601 TE											LIVED	2.000001		
COMPS A	2.36	2.36	2.382857143	19	2.2				2.36			2.36	2.2	2.3
Cryptography and System Security CSC 602 TE COMPS A	2.93	2.88	2	2.84	2.68			3	2.87	2.87		2.87		2.9
Mobile Computing CSC603 TE COMPS A	2.37	2.64	2.64		2.58				2.52	2.52	2,52	2,52	2.37	2.5
Artificial Intelligence CSC 604 TE COMPS A	2.83	2.83	2.84		2.84					2.8		2.8	2.84	2.8
Cloud Computing CSL605 TE COMPS A	2.733333333	2.733333333	2.7333333333	2.733333	2.733333							2.733333	2.733333	
Quantitative Analysis CSDLO6013 TE COMPS A & B CSDL601	2.35	2.4	3	3	3									
Internet of Things CSDLO6011 TE COMPS A & B CSDL602	2.75	2.75	2.75		2.75				2.75	2.75	505551110401105	2.75	2.75	2.7
Mini Project 2B CSM601 TE COMPS A	3	3	3		3			3	3	3	3	2,333333	3	
System Programmimg and Complier construction CSC 601 TE										- 00				
COMPS B	2.32	2.32	2.314285714		2.36	L			2.32			2.32	2 2.36	2.3
Cryptography and System Security CSC 602 TE COMPS B	2.9	2.68	1.95	3	2.52	2.63			3				2.72	2.5
Mobile Computing CSC603 TE COMPS B	2.76	2.9	3	2	2.79				2	3	3	1	3 2.76	1
Artificial Intelligence CSC 604 TE COMPS B	3	3	3								~		3	
Cloud Computing CSL605 TE COMPS B	3	3	3	3	3					-			3 3	i i
Mini Project 2B CSM601 TE COMPS B	3	3	3		3			1	3 3	3	2,2	2,3	3	
Machine Learning CSC 701 BE COMPS A & B (2022-23)	2.64	2.65	2.63	2.67	1						the second s		2.64	1 2
Big Data Analytics CSC702 BE COMPS A & B	2.46	2.02	2.47	2.47	2.46		2.48						2.46	5 2.
Management Information System (MIS) ILO7013(Institute level Elective) CSILO701 BE COMPS A & B	2.512	2.512	-			2.5		2.	5			2.51	2	
CSDC7013: Natural Language Processing (Department level Elective) CSDC7013 BE COMPS A & B	2.59	2.58	2.58	2.6	5 2.58				2.5	2.5		2	.5	3
CSDC7022 : Block Chain (Department level Elective) CSDC7022 BE COMPS A & B	2.41	2.39	2.18		2.29	1		2.0	8 2.41	2.41	2.10	3 2.3	19 2.4	1 2.
ILO7016 : Cybersecurity and Laws (Institute level Elective) ILO7016 BE COMPS A & B	1.9975					2.0366	7	1.7	6			1.997	75	1.99
Project 1 CSP701 BE COMPS A & B	3	2.84	2.84		3 2.68	2.84	2.68		3 2.96	2.968	2.6	8	3 2.8	38 2
Distributed Computing CSC801 BE COMPS A & B	2.74				0			1		_				

Head of Computer Engineering Department Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram. Bandstand. Bandra (W). Mumbar

FR. Conceicao Rodrigues College of Engineering Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Computer Engineering

	PO1	PO2	PO3	PO4	PO5	POS	P07	POS	PO9	PO10	PO11	P012	PSO1	PSO2
CSDC8013 : Applied Data Science (department Level Elective) BE COMPS A	2.49	2.369444444	2.315	2.423333	2.495							2.565	2.369444	
CSDC8023: Social Media Analytics (department Level Elective)- CSDC802 BE COMPS A & B	2.46	2.45	2.47	2.4	2.42	2.4	2.4			2.4		2.42	2.4	2.4
Project Management ILO8021(Institute Level Elective)- (JM) CSILO801) BE COMPS A & B		3	3	3		3					3	3	3	3
Finance Management ILO8022(Institute Level Elective) -CSILO802 (BSD) BE COMPS A & B	2.6	2.6	2.6	2.6	2.6						2.6	2.6		
Project II CSP801-(C415) BE COMPS A & B	3	3	3	3	2.84	2.68	2.68	2.92	2.92	2.92	3	2.92	2.87	2.87
SUM of Direct PO and PSO attainment	210.876166	169.3077778	176.5298095	76.115999	130.92386	31.7866	24.04	46.5	99.206	86.005333	57.097333	116.410166	146.47677	106.95216
Count N (Subjects Mapped to each PO)	78	63	65	29	48	12	9	17	37	31	22	44		4
Average of direct PO and PSO attainmnet	2.703540598	2.687425044	2.715843223	2.62468962	2.7275805	2.64888	2.67111	2.7352941	2.68124324	2.77436558	2.595333318	2.6456855	2.7125328	2.6085894
Indirect PO Attainment (graduate Exit Survey)	3	3	3	3	3	3	3	3	3	3	3	3	3	1
Alumni Exit survey	3	2	2	1	1	2	1	2	. 3	3	3		1	(
Indirect PO attainmnet (Events)	2.523809524	2.557692308	2.55	2.375	2.2	2.18181	2.33333	2.2424242	2.30902439	2.12068965	2.20689655	2.2444444	42.16	2.071428
Average Indirect PO & PSO attainment (Graduate Exit Survey & Alumni Exit Survey & Events)	2.841269841	2.519230769									22.73563218	En anna anna an		
Average PO Attainment (0.8*Direct+0.2*Indirect)	2.731086447	2.653786189	2.676007912	2.52475169	2.5953977	2.59789	2.55911	2.6710635	2.69892955	42.76087177	92.62339309	12.6661781	0 2.580692	9 2.358300
Total Subjects : 82		12 7223	A CONTRACTOR	C C C C C C C C C C C C C C C C C C C	States 1	1000		3 25 - L . E				1	1	

Head of Computer Engineering Department Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W). Mumbai

Fr. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 **Department of Electronics and Computer Engineering**

B.E. (ECS) (Semester VII)

(2022-23)

Course outcomes & Assessment Plan

Subject: Deep Learning

Subject code: ECC DO701

Teacher-in-charge: Prof. Dipali Koshti

Academic Term: July - October 2022

Module No.	Unit No.	Contents	Hr
		Introduction	
1	1.1	Biological neuron, Mc-Culloch Pitts Neuron, Perceptron, Perceptron Learning, Delta learning, Multilayer Perceptron: Linearly separable, linearly non- separable classes.	0:
2	1.2	Deep Networks: Fundamentals, Brief History, Three Classes of Deep Learning Basic Terminologies of Deep Learning Training, Optimization and regularization of Deep Neural Network	
2	2.1	Training Feedforward DNN: Multi Layered Feed Forward Neural Network, Learning Factors, Activation functions: Tanh, Logistic, Linear, Softmax, ReLU, Leaky ReLU, Loss functions: Squared Error loss, Cross Entropy, Choosing output function and loss function	08
	2.2	Optimization: Learning with backpropagation, Learning Parameters: Gradient Descent (GD), Stochastic and Mini Batch GD, Momentum Based GD, Nesterov Accelerated GD, AdaGrad, Adam, RMSProp	
	2.3	Regularization: Overview of Overfitting, Types of biases, Bias Variance Tradeoff Regularization Methods: L1, L2 regularization, Parameter sharing, Dropout, Weight Decay, Batch normalization, Early stopping, Data Augmentation, Adding noise to input and output.	
		Convolutional Neural Networks (CNN): Supervised Learning	
3	3.1	Convolution Operation, Motivation, Basic structure of a convolutional neural network: Padding, strides, pooling, fully connected layers, interleaving between layers	08
	3.2	Training a convolutional network: Backpropagation through convolution, Backpropagation as convolution with inverted filter, convolution/ backpropagation as matrix multiplication	

		Modern Deep Learning Architectures: LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNet, ResNet	
		Recurrent Neural Networks (RNN)	2
4	4.1	Sequence Learning Problem, Unfolding Computational graphs, Recurrent Neural Network, Bidirectional RNN, Back propagation Through Time (BTT), Vanishing and Exploding Gradients, Truncated BTT	06
	4.2	Long Short Term Memory: Selective Read, Selective write, Selective Forget, Gated Recurrent Unit	
		Autoencoders: Unsupervised Learning	
5	5.1	Introduction, Linear Autoencoder, Undercomplete Autoencoder, Overcomplete Autoencoders, Regularization in Autoencoders	06
	5.2	Denoising Autoencoders, Sparse Autoencoders, Contractive Autoencoders	
		Recent Trends and Applications	
	6.1	Generative Adversarial Network (GAN): Architecture	
6	6.2	Applications: Image Compression, Brain Tumour Detection, Fraud Detection, Expression identification.	06
		Total	39

Text Books:

- 1. Ian Goodfellow and Yoshua Bengio and Aaron Courville. Deep Learning. An MIT Press book.2016.
- 2. Li Deng and Dong Yu, "Deep Learning Methods and Applications", now publishers Inc (30 June 2014)
- 3. Satish Kumar "Neural Networks A Classroom Approach" Tata McGraw-Hill.
- 4. J M Zurada "Introduction to Artificial Neural Systems", Jaico Publishing House
- 5. M. J. Kochenderfer, Tim A. Wheeler. "Algorithms for Optimization", MIt Press.

Reference Books:

- 1. Jon Krohn, Grant Beyleveld, Aglae Bassens, "Deep Learning Illustrated: A Visual, Interactive
- 2. Guide to Artificial Intelligence", Pearson Education.
- 3. Buduma, N. and Locascio, N., "Fundamentals of deep learning: Designing next-generation machine intelligence algorithms" 2017. O'Reilly Media, Inc.".
- 4. François Chollet, "Deep Learning with Python", Manning Publications, 2018.
- 5. Douwe Osinga. "Deep Learning Cookbook", O'REILLY, SPD Publishers, Delhi.
- 6. Simon Haykin, Neural Network- A Comprehensive Foundation- Prentice Hall International, Inc.

Course Objectives:

- 1. To develop mathematical concepts required for Deep Learning algorithms
- 2. To gain an in-depth understanding of training Deep Neural Networks.
- 3. To acquire knowledge of advanced concepts of Convolution Neural Networks, Autoencoders and Recurrent Neural Networks
- 4. To get familiarised with the recent trends in Deep Learning.

Course Outcomes:

After successful completion of the course, students will be able to:

0	Statement	Bloom's level	Targe
DO701.1	Explain the basic knowledge of Neural Networks	2	2.5
DO701.2	Explain the process of training, optimization, and Regularization of Deep Neural Networks	2	2.5
DO701.3	Design supervised models for DNN	3	2.5
DO701.4	Design unsupervised model for DNN	3	2.5
DO701.5:	Select and apply a suitable DNN model for a given application	4	2.5

CO-PO-PSO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO 12	PSO1	PSO2
DO701.1	3													
DO701.2	3													
DO701.3	3	3	3	1	2					0			3	3
DO701.4	3	3	3	1	2								3	3
DO701.5	3	3	3	3	3				3	3		2	3	3

Provide a justification of PO to CO mapping

CO	PO	PI
DO701.1	PO1	 1.1.1 Apply the knowledge of discrete structures, linear algebra, statistics, and numerical techniques to solve problems. 1.3.1 Apply engineering fundamentals. 1.4.1 Apply theory and principles of Electronics and/or computer science and engineering to solve an engineering problem.
DO701.2	PO1	 Apply the knowledge of discrete structures, linear algebra, statistics, and numerical techniques to solve problems. Apply engineering fundamentals Apply theory and principles of Electronics and/or computer science and engineering to solve an engineering problem.
DO701.3	PO1	 1.1.1 Apply the knowledge of discrete structures, linear algebra, statistics and numerical techniques to solve problems 1.1.2 Apply the concepts of probability, statistics and queuing theory in modeling ofcomputer-based system, data and network protocols. 1.4.1 Apply theory and principles of Electronics and/or computer science and engineering
	PO2	 2.1.2 Identify Electronic Systems/components, variables, and parameters to solve the problems 2.1.3 Identify processes/modules/algorithms of a computer-based system and parameters to solve the problems 2.1.4 Identify mathematical algorithmic knowledge that applies to a given problem 2.2.4 Compare and contrast alternative solutions/methods to select the best methods

	PO3	3.1.1 Define a precise problem statement with objectives and scope.
	(]	3.2.1 Explore design alternatives.
		3.2.2 Produce a variety of potential design solutions suited to meet functional
		requirements.
	PO4	4.1.2 Examine relevant methods, tools and techniques of experiment design, system
		calibration, data acquisition, analysis and presentation.
	PO5	5.1.1 Identify modern engineering tools, techniques and resources for engineering
		activities.
	PSO1	Students design and implement supervised DNN model for real – world application. They
		work on real-world datasets and apply DNN models to get the desired result.
	PSO2	In order to design the supervised DNN model they need to use modern technologies like
		TensorFlow. Keras, PyTorch and many more.
00701.4	PO1	1.1.1 Apply the knowledge of discrete structures, linear algebra, statistics and numerical
		techniques to solve problems
		1.1.2 Apply the concepts of probability, statistics and queuing theory in modeling of
		computer-based system, data and network protocols.
	1	1.4.1 Apply theory and principles of Electronics and/or computer science and
	PO2	2.1.2 Identify Electronic Systems/components, variables, and parameters to solve the
		problems
		2.1.3 Identify processes/modules/algorithms of a computer-based system and parameters
	1	to solve the problems
		2.1.4 Identify mathematical algorithmic knowledge that applies to a given problem
	PO3	3.1.1 Define a precise problem statement with objectives and scope.
		3.2.1 Explore design alternatives.
		3.2.2 Produce a variety of potential design solutions suited to meet functional
		requirements.
		the second techniques of experiment design system
	PO4	4.1.2 Examine relevant methods, tools and techniques of experiment design, system
	\times $^{-1}$	calibration, data acquisition, analysis and presentation.
	PO5	5.1.1 Identify modern engineering tools, techniques and resources for engineering activitie
	PSO1	Students design and implement unsupervised DNN model for real – world application. They
	rsor	work on real-world datasets and apply DNN models to get the desired result.
	PSO2	In order to design the unsupervised DNN model they need to use modern technologies like
	r502	TensorFlow. Keras , PyTorch and many more.
	-	It is the second supported by the second supported by the second supported by the second support of the second
DO701.5	PO1	1.1.3 Apply the knowledge of discrete structures, linear algebra, statistics, and numerica techniques to solve problems.
	1 1 1 1 1	1.3.1 Apply engineering fundamentals.
		1.4.1 Apply theory and principles of Electronics and/or computer science and engineering
		to solve an engineering problem.

	PO2	2.1.1 Articulate problem statements and identifies objectives
		2.1.3 Identify processes/modules/algorithms of a computer-based system and parameters to solve the problems.
		2.2.2 Identify, assemble and evaluate information and resources.
		2.2.3 Identify existing solution/methods to solve the problem, including forming justified approximations and assumption
		2.2.4 Compare and contrast alternative solution/methods to select the best methods.
	PO3	3.1.3 Review state-of-the-art literature to synthesize system requirements. 3.2.1 Explore design alternatives.
		3.4.1 Refine a conceptual design into a detailed design within the existing constraints (of the resources)
		3.4.2 Generate information through appropriate tests to improve or revise the design
	PO4	4.3.1 Use appropriate procedures, tools and techniques to collect and analyze data 4.3.2 Critically analyze data for trends and correlations, stating possible errors and limitations
		4.3.3 Represent data (in tabular and/or graphical forms) so as to facilitate analysis and explanation of the data, and drawing of conclusions
	PO5	5.1.1 Identify modern engineering tools, techniques and resources for engineering activities
	PO9	 9.1.1 Recognize a variety of working and learning preferences; appreciate the value of diversity on a team 9.3.1 Present results as a team, with smooth integration of contributions from all
		individual effort
		9.2.1 Demonstrate effective communication, problem-solving, conflict resolution and leadership skills.
	PO10	10.1.1 Read, understand and interpret technical and non-technical information 10.3.1 Create engineering-standard figures, reports and drawings to complement writing
		and presentations
:	PO12	12.3.1 Source and comprehend technical literature and other credible sources of information
	PSO1	Students select a suitable real-world problem and provide a solution to it. They select a
		suitable DNN model by exploring various DNN models used in literature and implement it for real – world application using new technologies.
	PSO2	In order to provide a feasible real-world solution, they need to use new technologies such as Keras, Pytorch, tensorflow.

CO Assessment Tools:

Course Outcome	Direct Method (80%)											
	Unit Tests Assignments						Quiz	zes		Case study/Tech nical paper	End Sem Exam	Course exit survey
	1	2	1	2	3	1	2	3	4			
DO701.1	20%		10%			10%					60%	100%
DO701.2	20%	-		1.0%			· 10%				G 0%	100%
DO701.3	10%	10%			601		·	10%			Ġ0%	100%
DO701.4		20%			10%			10%			60%	100%
DO701.5	20%								1:0%	r0%	60%	100%

CO calculation= (0.8 *Direct method + 0.2*Indirect method)

Rubrics for Assignments:

Indicator	Not satisfactory	Satisfactory	Good	Excellent
Timeline (3)	More than two sessions late (0)	More than one session late (1)	One session late (2)	On time (3)
Depth of Understanding (4)	Unsatisfactory (1)	Superficial (2)	Satisfactory (3)	Adequate (4)
(4) Completeness (3)	Not submitted (0)	Major topics are omitted or addressed minimally (1)	Most major and some minor points are covered and are accurate (2)	All major and minor points are covered and are accurate (3)

Curriculum Gap identified: (with action plan)

Transformers have revolutionized the way we process sequence-to-sequence data. Transformers are the next-generation deep neural networks and are successors of RNN and LSTM. It is essential that students have at least basic knowledge of transformer, and how to implement transformers to to solve real-world complex sequence-to-sequence problems.

Action plan:

To bridge the gap following actions have been planned.

- 1) Additional practicals based on Transformers will be taken in the laboratory.
- 2) Case study Review 3 technical papers on any advanced topic (not covered in the syllabus) in deep learning and present the summary of it.

Modes of content delivery

Modes of Delivery	Brief description of content delivered
Class room lecture, PPT	 Introduction Optimization and Regularization Convolution Neural Networks Recurrent Neural networks Encoders GAN
Assignments	Assignment 1: Covering the basics of neural networks Assignment 2: Covering Deep network optimization and regularization Assignment 3: Covering design of supervised and unsupervised deep networks.
Quizzes	Quiz on each module
Study of Technical papers	Covering module 6 topics: Image compression, Expression identification, fraud detection
Informative videos	CNN, LeNET, AlexNET, VGGNet
Review and present technical papers	Image compression, Expression identification, fraud detection
Case study/Mini project	Content Beyond syllabus.

Lesson Plan

DEEP LEARNING

BE Elec	tronics and	Computer S	Science, S	emester VII					
July- Oc	tober 2022								
Deep	Learning	g (DOC7	01)						
			Lecture	3					
		ŀ	Practical	9 1					
			Tutorial	-					
				Hours	Mark	ks			
		Theory exar		3	80				
	the second se	Internal Ass			20				
	Pr	actical Exar		-					
		Oral Exar		-					
		le	rm work	-					
	n		Total	-	100				
	D	ay		Tir	ne				
5									
Lecture	D	ate	1	Topic		1			
No.	2		-	ropic		C	ontent delivery	Refe	Remark
	a she she was		Mo	dule1 : Introduction		11.70		file and the	
1	19-7-22	19-7-22	1	ction to the course, inf	-	Class	sroom Teaching PPT	3,4	
			10 1741 268 THE ROOM TO A	objectives and plan, Bi	See See Sector				
				Mc-Culloch-Pitt Mod					
2	21-7-22	21-7-22	Percept	ron, perceptron learnin	ng		sroom Teaching PPT,	3,4,17	
							Virtual Lab		
3	22-7-22	22-7-22	Delta le	arning		Class	sroom Teaching PPT,	13,4	
4	26-7-22	26-7-22	Multilay	er perceptron		Class	sroom Teaching PPT,	3,4,17	
12						Lab,	Virtual Lab		11.00
5	28-7-22	28-7-22	Deep N	etworks		Class	sroom Teaching PPT	1,2	Quiz1, Ass
A Contraction of the second	Module 2	: Training,	Optimizat	ion and regularization	on of Deep No	eural N	etwork		Constant of the
6	29-7-22	29-7-22		ayered Feed Forward	Neural	Class	sroom Teaching PPT	1,2	
	1		Network	k, Learning Factors,					
7	2-8-22	3-8-22	Activati	on functions		_	sroom Teaching PPT	1,2,3	
8	3-8-22	5-8-22	Loss Fu	nctions		Class	sroom Teaching PPT	1,2	
9	5-8-22	10-8-22	Learnin	g with Backpropagatio	on	Class	sroom Teaching PPT	1,2	
10	10-8-22	17-8-22		g parameters		1	sroom Teaching PPT	1,2	
11	12-8-22	24-8-22	Overvie	w of overfitting, types ariance trade off	s of biases,	Class	sroom Teaching PPT	1,2,15	

2	17-8-22	24-8-22	Regularization: L1,L2, Parameter sharing, Drop out, weight decay	Classroom Teaching, PPT [Youtube Video]	1,2,5,1 5	
13	19-8-22	26-8-22	Batch Normalization, Data augmentation, early stopping, Adding noise to input and output	Classroom Teaching PPT	1,2,5,1 5	Quiz2, Ass2
the se		Mod	ule 3: Convolutional Neural Networks	A State State State	C. Salar	
14	23-8-22	30-8-22	Convolution Operation, Motivation,	Classroom Teaching PPT [NPTEL Video, coursera video]	1,2	
15	25-8-22	6-9-22	Basic structure of a convolutional neural network: Padding, strides	Basic structure of a convolutional neural Classroom Teaching PPT		
16	26-8-22	7-9-22	pooling, fully connected layers, interleaving between	Classroom Teaching PPT	1,2	
17	13-08-22	13-9-22	Training a convolutional network: Backpropagation through convolution,	Classroom Teaching PPT	1,2	
18	13-08-22	13-9-22	Backpropagation as convolution with inverted filter, convolution/ backpropagation as matrix multiplication	Classroom Teaching PPT	1,2	
19	25-08-22	14-9-22	LeNet, AlexNet	Classroom Teaching PPT [Technical paper]	1,2	
20	26-08-22	20-9-22	ZF-Net, VGGNet,	Classroom Teaching PPT [Technical paper]	1,2	
21	30-8-22	20-9-22	GoogLeNet, ResNet	Classroom Teaching PPT	1,2	Quiz3
an a		Modu	le 4: Recurrent Neural Networks (RNN)			
22	27-08-22	21-09-22	Sequence Learning Problem, Unfolding Computational graphs	Classroom Teaching PPT	1,2	31/8 - 4/9 Midterm break
23	9-9-22	21-09-22	Recurrent Neural Network	Classroom Teaching PPT	1,2	5,6,7 Sep UT1
24	13-9-22	23-9-22	Bidirectional RNN	Classroom Teaching PPT	1,2	
25	15-9-22	24-9-22	Back propagation Through Time (BTT), Vanishing and Exploding Gradients,, Truncated BTT	Classroom Teaching PPT	1,2	
26	16-9-22	27-9-22	Long Short Term Memory: Selective Read, Selective write, Selective Forget,	Classroom Teaching PPT	1,2	ten a
27	20-9-22	28-9-22	Long Short Term Memory (continued)	Classroom Teaching PPT		Quiz, Ass3
		O.Kor activ	Module 5: Encoders			
28	22-9-22	29-9-22	Introduction, linear encoder	Classroom Teaching PPT	1,2	
29	23-9-22	30-9-22	Undercomplete encoder	Classroom Teaching PPT	1,2	
30	27-9-22	30-9-22	Overcomplete encoder	Classroom Teaching PPT	1,2	
31	29-9-22	4-10-22	Regularization in encodr		1,2	
32	30-9-22	4-10-22	Denoising encoders	Classroom Teaching PPT	1,2	
33	4-10-22	7-10-22	Sparse encoders, Contractive encoders	Classroom Teaching PPT	1,2	Quiz4
			dule 6: Recent Trends and Applications			
34	7-10-22	11-10-22 11-10-22	Generative Adversarial network:		1,2	
	11-10-22		Applications: Image compression	Classroom Teaching PPT		

36	12-10-22	12-10-22	Brain tumor detection	Classroom Teaching PPT [Technical paper]	Flip classroom
37	14-10-22	14-10-22	Identification	Classroom Teaching PPT [Technical paper]	Quiz4, flip classroom

Text Books:

- 1. Ian Goodfellow and Yoshua Bengio and Aaron Courville. Deep Learning. An MIT Press book,2016.
- 2. Li Deng and Dong Yu, "Deep Learning Methods and Applications", now publishers Inc (30 June 2014),
- 3. Satish Kumar "Neural Networks A Classroom Approach" Tata McGraw-Hill.
- 4. J M Zurada "Introduction to Artificial Neural Systems", Jaico Publishing House
- 5. M. J. Kochenderfer, Tim A. Wheeler. "Algorithms for Optimization", MIt Press.

Reference Books:

- 6. Jon Krohn, Grant Beyleveld, Aglae Bassens, "Deep Learning Illustrated: A Visual, Interactive
- 7. Guide to Artificial Intelligence", Pearson Education.
- 8. Buduma, N. and Locascio, N., "Fundamentals of deep learning: Designing next-generation machine intelligence algorithms" 2017. O'Reilly Media, Inc.".
- 9. François Chollet, "Deep Learning with Python", Manning Publications, 2018.
- 10. Douwe Osinga. "Deep Learning Cookbook", O'REILLY, SPD Publishers, Delhi.
- 11. Simon Haykin, Neural Network- A Comprehensive Foundation-Prentice Hall International, Inc.

Online references:

- 12. https://nptel.ac. https://deeplearning.cs.cmu.edu/S21/index.html
- 13. http://www.cse.iitm.ac.in/~miteshk/CS6910.html
- 14. https://nptel.ac.in/courses/106/106/106106184/
- 15. https://www.deeplearningbook.org/
- 16. http://introtodeeplearning.com/
- 17. http://vlabs.iitb.ac.in/vlabs-dev/labs/machine learning/labs/index.php

Videos:

Video 1: L2 Regularization: L1 and L2 Regularization Methods, Explained | Built In

Video 2: Convolution Operation: Deep Learning(CS7015): Lec 11.1 The convolution operation - YouTube

Video 3: CNN: Deep Learning(CS7015); Lec 11.3 Convolutional Neural Networks - YouTube

Video 4: CNN: One Layer of a Convolutional Network - Foundations of Convolutional Neural Networks | Coursera

Video 5: How to calculate Neural network Parameters: https://www.youtube.com/watch?v=bikmA-VmSbY

Technical papers:

[1] Alex Krichevsky et al. "ImageNet Classification with Deep Convolutional Neural Networks ", NIPS'12: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 December 2012 .

[2] Karen Simonyan et al. "VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION", ICLR 2015,

[3] Asifullah Khan et al.," A Survey of the Recent Architectures of Deep Convolutional Neural Networks", In Artificial Intelligence Review, DOI: https://doi.org/10.1007/s10462-020-09825-6.

Examination Scheme

	Module	Lecture Hours		ribution in Test assessment/TW)	Approximate Marks distribution in Sem. End Examination
			Test 1	Test 2	Line Examination
1	Introduction	05	06 (CO1)		
2	Optimization and regularization	08	08 (CO2)		
3	Convolution Neural networks	08	06 (CO3)	05(CO3)	*
4	Recurrent Neural networks	06		08 (CO4)	
5	Encoders	06		03 (CO5)	
6	Recent trends and Application	06		04 (CO5)	

Bhoir Sign:
larayanan Sign: ()
lpa Patil Sign:
roval: 5/8/22

PracticalPlan

B.E. (ECS) (Semester VII)

Subject: Deep Learning Lab (Practical)

Teacher-in-charge: Prof. Dipali Koshti

Subject code: ECL 703

Academic Term: July – October 2022

Course Outcomes:

Upon successful completion of the laboratory students will be able to:

ECL703.1 Implement basic neural network models to learn logic functions.

- ECL703.2 Design and train feedforward neural networks using various learning algorithms.
- ECL703.3 Build and train suitable deep learning models such as CNN, RNN, Auto-encoders, and,LSTM to solve a real-world problem.
- ECL703.4: Select and implement a suitable deep learning model to solve the real-world problem and evaluate the performance of the model with respect to the bias-variance tradeoff, overfitting and underfitting, and estimation of test error.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO 12	PSO1	PSO2
ECL703.1	3	2			1									
ECL703.2	3	2	2		1									
ECL703.3	3	3	3	2	3								3	3
ECL703.4	3	3	3	3	3				3	3		3	3	3

Relationship of course outcomes with program outcomes:

Provide justification of PO to CO mapping

CO	BL	С	PI	PO
ECL703.1: Implement basic neural network models to learn logic functions.	2	1.1 1.3	1.1.1 1.3.1	PO1
nodels to ream logic functions.		2.1 5.1	2.1.3 2.1.4	PO2
	11		5.1.1	PO5
ECL703.2 Design and train feedforward neural networks using various learning	3	1.1 1.3	1.1.1 1.3.1	PO1
algorithms.		2.1 5.1	2.1.3 2.1.4	PO2
		30.	3.2.1	PO3

			5.1.1	PO5
ECL703.3 Build and train suitable deep	3	1.1	1.1.2	PO1
learning models such as CNN, RNN, Auto-	1	1.4	1.4.1	
encoders, and, LSTM to solve a real-world		2.1	2.1.2	PO2
problem		2.2	2.1.4	
		2.3	2.2.4	
		4.1		
		4.3	2.3.1	
		5.1	3.2.1	PO3
			4.1.2	PO4
			4.3.1	
			5.1.1	PO5
ECL703.4: Select and implement a suitable	5	1.1	1.1.1	PO1
deep learning model to solve the real-world		1.4	1.4.1	
problem and evaluate the performance of		2.1	2.1.1	PO2
the model with respect to the bias-variance		2.2	2.1.3	943 (M24 (M24)
trade-off, overfitting and underfitting, and		3.1	2.2.2	
estimation of test error.		3.2	2.2.3	
		3.4	2.2.4	
		4.3	3.1.3	PO3
	×	5.1	3.2.1	
		9.1	3.4.1	
		9.2	3.4.2	
		9.3	4.3.1	PO4
		10.1 10.3	4.3.2	
		12.3	5.1.1	PO5
		1.13	9.1.1	PO9
		1.1	9.3.1	
			9.2.1	
			10.1.1	PO10
			10.3.1	
			12.3.1	PO12

CO Assessment Tools:

Course Outcomes	Direct Methods(80%)										
	Attendance	Viva- voce/Post lab questions/ Demonstrat ion	Journal Assessment based on lab performance	Mini Project	Case study/ Technical paper presentation	End Sem Practical Exam	Lab exit survey				
ECL703.1	10%	20%	20%			50%	100%				
ECL703.2	10%	20%	20%			50%	100%				
ECL703.3	10%	20%	20%	5		50%	100%				
ECL 703.4	10%	20%		20%	10%	40%	100%				

CO calculation= (0.8 *Direct method + 0.2*Indirect method)

Rubrics for assessing experiments:

Sr. No	Performance Indicator	Below average	Average	Good	Excellent
1	On time Submission (2)	Not submitted(0)	Submitted after deadline (1)	Early or on time submission(2)	
2	Test cases and output (4)	Incorrect output (1)	The expected output is verified only a for few test cases (2)	The expected output is Verified for all test cases but is not presentable (3)	Expected output is obtained for all test cases. Presentable and easy to follow (4)
3	Coding efficiency (2)	The code is not structured at all(0)	The code is structured but not efficient (1)	The code is structured and efficient. (2)	-
4	Knowledge(2)	Basic concepts not clear (0)	Understood the basic concepts (1)	Could explain the concept with suitable example (1.5)	Could relate the theory with real world application(2)

Practical Session Plan

LASS			BE ECS, S	Semester VII					
	ic Term		July - Oct	ober 2022					
ubject			Deep Le	earning Lab	poratory (ECL			
			703)						
	Evaluation System				Hours	Marks			
	13		Practical	Examination		25			
			Oral	Examination					
				Term work		25			
				Total		50			
	Time Table	Day	Batch	h	Tin	ne			
		Monday							
		Tuesday							
		Wednesday Friday	÷						
TIAL	of Free oning and a	Friday							
	of Experiments								
Sr.		Title		Attained	Attained POs PO1, PO2,PO5				
1	Implement perceptron alg gate.	orithm and simulate ar	ny one logic	ECL703.1	PO1, PO2,P	05			
2	Implement MLP to simula			ECL703.1	PO1, PO2,P				
3	Implement basic Gradie objective function	ent Descent Algorith	m for 1D	ECL703.2	PO1, PO2,PO3, PO5				
4	Implement the Gradien Nesterov Momentum)	t Descent Optimizati	ion with	ECL703.2	PO1, PO2,PO3,PO5				
5	Design and implement a network with at least 2 h application. Use approp function and loss function	hidden layers for a cl riate Learning Algor	lassification	ECL703.3	PO1,PO2,PO3,PO4,PO PSO1,PSO2				
6	Design and implement a classification	a CNN model for ima	age	ECL703.3	PO1,PO2,PC PSO1,PSO2				
7	Design and implement a data	anLSTM for predicti	ng Time series	ECL703.	PO1,PO2,PC PSO1,PSO2	93,PO4,PO5			
8	Design the architecture a model for Image denoisin		o-encoder	ECL703.3	PO1,PO2,PO PSO1,PSO2	3,PO4,PO5			
			the second s	ECL 703.4	,9,10,12				

	Implement word predictor using transformer (Content Beyond Syllabus)		PO1,PO2,PO3,PO4,P O5 PSO1,PSO2
11	To select a real-word problem and study few recent technical papers related to the problem and summarize it.	ECL 703.4	1,2,3,4,5,9,10,12 PSO1,PSO2

Practical Session Plan

Batch		Dates	Remarks
	Planned	Actual	al di dedetti ektikati di venen ektikati
Experiment No. 1			u
D	4-8-2022	4-8-2022	
Experiment No. 2			
D	11-8-2022	11-8-202	
Experiment No. 3			
D	18-8-2022	18-8-2022	
Experiment No. 4			
D	25-8-2022	25-8-2022	
Experiment No.5			
D	01-9-2022	1-09-2022	
Experiment No. 6			
D	15-9-2022	22-09-2022	
Experiment No. 7			
D	22-09-2022	29-09-2022	
Experiment No. 8			
D	29-9-2022	6-10-2022	
Experiment No. 9			
D	6-10-2022	13-10-2022	
Experiment 10			
D	13-10-2022	20-10-2022	

Submitted By **Approved By** Prof. Dipali Koshti ii) Dr. D. V Bhoir Sign: 8722 ii) Prof. K. Narayanan Sign: Sign: iii) Prof. Shilpa Patil Sign: 2 Date of Approval: 5-8-22 Date of Submission: 5-8-2022 Remarks by PAC (if any)

Branch/Semester: ECS/VII Course: Deep Learning Lab (ECL703)

Academic Year: 2022-23

CO No.	Course Outcome	Attainment
ECL703.1	Implement basic neural network models to learn logic functions	2.76
ECL703.2	Design and train feedforward neural networks using various learning algorithms	2.76
ECL703.3	Build and train suitable deep learning models such as CNN, RNN, Auto-encoders, and, LSTM to solve a real-world problem	2.6
ECL703.4	Select and implement a suitable deep learning model to solve the real-world problem and evaluate the performance of the model with respect to the bias-variance trade-off, overfitting and underfitting, and estimation of test error	2.92

CO ATTAINMENT

S.J. Patil Shilpa Patil

Branch/Semester: ECS/VII Course: Deep Learning Lab (ECL703)

Academic Year: 2022-23

PO	AT	TA	N	М	EN	IT

Course outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	CO attainment
ECL703.1	3	2			1					Concern of the Concerns		No. Mar. de Tanacia			2.76
ECL703.2	3	2	2		1										2.76
ECL703.3	3	3	3	2	3								3	3	2.6
ECL703.4	3	3	3	3	3				3	3		3	3	3	2.92
CO To PO	12	10	8	5	8				3	3		3	6	6	2.52
CO-PO Matrix	3	2.5	2.66	2.5	2				3	3		3	3	3	
PO Attainment	2.76	2.76	2.76	2.79	2.76				2.92	2.93		2.92	2.76	2.76	

2-2. Patil

Branch/Semester: ECS/VII Course: Deep Learning (ECCD0701)

Academic Year: 2022-23

CO1 Attainment

ECCD0701.1:Explain the basic knowledge of Neural Networks

Direct Methods	Weightage	Successful students	Total No. Stud	Per(%)	Level	Attainment	
Test	0.2	No. of students score >= 3.6/6 in Test1 =	17	17	100.00	3	0.5
60% of students will minimum score 60% marks							
Quiz	0.1	No. of students score >= 7/10 in Quiz1 =	15	17	88.24	3	0.3
60% of students will minimum score 70% marks			1				
Assignment	0.1	No. of students score >=7 /10 in Ass1 =	17	17	100.00	3	0.3
70% students will minimum score 70% marks							
End semester Examination(TH)	0.3	No. of students score >= 48/80	12	17	70.59	2	0.5
60% of Students with minimum score 60% marks							
End semester Examination(ORAL)	0.3	No. of students score >=17.5 /25 =	14	17	82.35	3	0.9
60% of Students with minimum score 70% marks							
Indirect Method		F			-	SUTT	2.7
Course Exit Survey	1	No. of students agree or strongly agree =	13	13	1.00	3	3
75% students strongly agree and agree		No.of Respondents = 13					

Co Attainment = 2.76

Levels	Test	Assignment	Quiz	End sem exam(TH)	End sem exam(PR)	Survey
1 (Low)	60-70	70-80	60-70	60-70	60-70	75-80
2 (Medium)	71-80	81-90	71-80	71-80	71-80	\$1-85
3 (High)	80 above	90 above	80 above	81 above	81 above	S6 above

Branch/Semester: ECS/VII Course: Deep Learning (ECCDO701)

Academic Year: 2022-23

CO2 Attainment

ECCDO701.2: explain the process of training, optimization and regularization of Deep neural networks

Direct Methods	Weightage	Successful students	ile.	Total No. Stud	Per(%)	Level	Attainment
Test	0.2	No. of students score >= 4.8/8 in Test1 =	13	17	76.47	2	0.4
60% of students will minimum score 60% marks							
Quiz	0.1	No. of students score >= 10.5/15 in Quiz2 =	11	17	64.71	1	0.1
60% of students will minimum score 70% marks							
Assignment	0.1	No. of students score >=7 /10 in Assignment2 =	17	17	100.00	3	0.3
70% students will minimum score 70% marks							
End semester Examination(TH)	0.3	No. of students score >= 48/80	12	17	70.59	2	0.6
60% of Students with minimum score 60% marks							
End semester Examination(ORAL)	0.3	No. of students score >=17.5 /25 =	14	17	82.35	3	0.9
60% of Students with minimum score 70% marks							
Indirect Method						sum	2.3
Course Exit Survey	1	No. of students agree or strongly agree =	13	13	1.00	3	3
75% students strongly agree and agree	1	No.of Respondents = 13					1

CO Attainment=2.44

Levels	Test	Assignment	Quiz	End sem exam(TH)	End sem exam(PR)	Survey
1 (Low)	60-70	70-80	60-70	60-70	60-70	75-80
2 (Medium)	71-80	81-90	71-80	71-80	71-80	81-85
3 (High)	80 above	90 above	80 above	81 above	81 above	86 above

S-1. Patel

Branch/Semester: ECS/VII Course: Deep Learning (ECCDO701)

Academic Year: 2022-23

CO3 Attainment

Direct Methods	Weightage	Successful students	Total No. Stud	Per(%)	Level	Attain	
Test	0.2	No. of students score >= 6/10 in Test1 (Q3) and test2 (Q1)=	12	17	70.59	2	0.4
60% of students will minimum score 60% marks							
Quiz	0.1	No. of students score >= 7/10 in Quiz3 (Section 1)=	14	17	82.35	3	0.3
60% of students will minimum score 70% marks		2) I					
Assignment	0.1	No. of students score >=7 /10 in Assignment3 (Part 1) =	17	17	100.00	3	0.3
70% students will minimum score 70% marks	-						
End semester Examination(TH)	0.3	No. of students score >= 48/80	12	17	70.59	2	0.6
60% of Students with minimum score 60% marks		20 20					
End semester Examination(ORAL)	0.3	No. of students score >=17.5 /25 =	14	17	82.35	3	0.9
60% of Students with minimum score 70% marks							1.1
Indirect Method						sum	2.5
Course Exit Survey	1	No. of students agree or strongly agree =	13	13	1.00	3	3
75% students strongly agree and agree		No.of Respondents = 13					

ECCDO701.3: Design supervised models for DNN

CO Attainment = 2.6

Levels	Test	Assignment	Quiz	End sem exam(TH)	End sem exam(PR)	Survey
1 (Low)	60-70	70-80	60-70	60-70	60-70	75-80
2 (Medium)	71-80	81-90	71-80	71-80	71-80	81-85
3 (High)	80 above	90 above	80 above	81 above	81 above	86 above

S J. Potul

Branch/Semester: ECS/VII Course: Deep Learning (ECCDO701)

CO4 Attainment

Academic Year: 2022-23

CCD0701.4: Design unsupervised models for DNN

Direct Methods	Weightage	Successful students		Total No. Stud	Per(%)	Level	Attain
Test	0.2	No. of students score >= 4.8/8 in Test2 (Q2) and test2 (Q1)=	12	17	70.59	2	0.4
60% of students will minimum score 60% marks	0.2						
Quiz	0.1	No. of students score >= 7/10 in Quiz3 (Section - 2)=	14	17	82.35	3	0.3
60% of students will minimum score 70% marks							
Assignment	0.1	No. of students score >=7 /10 in Assignment3 (part-2)	17	17	100.00	3	0.3
70% students will minimum score 70% marks			1				
End semester Examination(TH)	0.3	No. of students score >= 48/80	12	17	70.59	2	0.6
60% of Students with minimum score 60% marks							
End semester Examination(ORAL)	0.3	No. of students score >=17.5 /25 =	14	17	82.35	3	0.9
60% of Students with minimum score 70% marks							
Indirect Method	15.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.					sum	2.5
Course Exit Survey	1	No. of students agree or strongly agree =	13	13	1.00	3	3
75% students strongly agree and agree		No.of Respondents = 13					

CO Attainment = 2.6

Levels	Test	Assignment	Quiz	End sem exam(TH)	End sem exam(PR)	Survey
1 (Low)	60-70	70-80	60-70	60-70	60-70	75-80
2 (Medium)	71-80	81-90	71-80	71-80	71-80	81-85
3 (High)	80 above	90 above	80 above	81 above	81 above	86 above

S-J. Potel

Branch/Semester: ECS/VII Course: Deep Learning (ECCDO701)

CO5 Attainment

Academic Year: 2022-23

ECCDO701.4: Select and apply a suitable DNN model for a given application

Direct Methods	Weightage	Successful students		Total No. Stud	Per(%)	Level	Attain	
Test	0.2	No. of students score >= 4.8/8 in Test2 (Q2) and test2 (Q1)=	11	17	64.71	1	0.2	
60% of students will minimum score 60% marks	0.2							
Quiz	0.1	No. of students score >= 7/10 in Quiz 4 =	15	17	88.24	3	0.3	
60% of students will minimum score 70% marks								
Technical paper presenatation	0.1	No. of students score >=7 /10 in Assignment3 (part-2)	16	17	94.12	3	0.3	
70% students will minimum score 70% marks		24						
End semester Examination(TH)	0.3	No. of students score >= 48/80	12	17	70.59	2	0.6	
60% of Students with minimum score 60% marks								
End semester Examination(ORAL)	0.3	No. of students score >=17.5 /25 =	14	17	82.35	3	0.9	
60% of Students with minimum score 70% marks								
Indirect Method						sum	2.3	
Course Exit Survey	1	No. of students agree or strongly agree =	13	13	1.00	3	3	
75% students strongly agree and agree		No.of Respondents = 13					N.S. S. S.	

CO Attainment= 2.44

Levels	Test	Assignment	Quiz	End sem exam(TH)	End sem exam(PR)	Survey
1 (Low)	60-70	70-80	60-70	60-70	60-70	75-80
2 (Medium)	71-80	81-90	71-80	71-80	71-80	81-85
2 (Medium)	80 above	90 above	80 above	81 above	81 above	86 above

Branch/Semester: ECS/VII Course: Deep Learning (ECCDO701)

Academic Year: 2022-23

CO ATTAINMENT

CO No.	Course Outcome	Attainment
ECCD0701.1	Explain the basic knowledge of Neural Networks	2.76
ECCDO701.2	Explain the process of training, optimization, and Regularization of Deep Neural Networks	2.44
ECCD0701.3	Design supervised models for DNN	2.6
ECCD0701.4	Design unsupervised model for DNN	2.6
ECCD0701.5	Select and apply a suitable DNN model for a given application	2.44

0

SilPath

Branch/Semester: ECS/VII Course: Deep Learning (ECCDO701)

Academic Year: 2022-23

PO ATTAINMENT

Course outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	0011	0013	DC 01	DECOR	со
ECCDO701.1	3				1.05	FUU	FOI	FUS	PUS	P010	PO11	PO12	PSO1	PSO2	attainment
ECCDO701.2	3	18.2				1. 1	-			=					2.76
ECCDO701.3	3	3	3	1	2			1.2					3	3	2.44
ECCD0701.4	3	3	3	1	2								3	3	2.6
ECCD0701.5	3	3	3	3	3				3	3		2	3	3	2.44
CO To PO	12	9	9	5	7	-	-		3	3	-	2	9	9	
CO-PO Matrix	2.4	3	3	1.7	2.3				3	3		2	3	3	
PO Attainment	2.57	2.55	2.55	2.48	2.50				2.44	2.44		2.44	2.55	2.55	a)

S : 1 Pate

Branch/Semester: ECS/VII Course: Deep Learning Lab (ECL703)

Academic Year: 2022-23

Lab outcome1 Attainment

ECL703.1: Implement basic neural network models to learn logic functions

Direct Methods	Weightage	Successful students		Total No. Stud	Per(%)	Level	Attainment
Attendance	0.1	Attendance >=7/10	17	14	0.82	2	0.2
70% of students will minimum score 70% marks		2					
Viva Voce/Post Lab questions	0.2	No. of students score >= 6/10	15	13	0.87	3	0.6
60% of students will minimum score 60% marks							
Lab Performance	0.2	No. of students score >= 14/20 in exp 1,2	17	15	0.88	2	0.4
70% students will minimum score 70% marks					4		
End semester PR Examination	0.5	No. of students score >=17.5 /25 =	14	17	82.35	3	1.5
60% of Students with minimum score 60% marks							
Indirect Method						sum	2.7
LAB Exit Survey	1 1	No. of students agree or strongly agree =	13	13	1.00	3	3
75% students strongly agree and agree		No.of Respondents = 13					

CO Attainment = 2.76

Levels	Attendance	Lab Performance	Viva voce	End sem exam(TH)	Survey
1 (Low)	70-80	70-80	60-70	60-70	75-80
2 (Medium)	81-90	81-90	71-80	71-80	81-85
3 (High)	90 above	90 above	80 above	81 above	86 above

FR. CONCEICAO RODRIGUES COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

S: + Potil

Branch/Semester: ECS/VII Course: Deep Learning Lab (ECL703)

Academic Year: 2022-23

Lab outcome2 Attainment

ECL703.2 :Design and train feedforward neural networks using various learning algorithms

Direct Methods Attendance	Weightage	Successful students		Total No. Stud	Per(%)	Level	Au.:
70% of students will minimum score 70% marks	0.1	Attendance >=7/10	17	14	0.82	2	Attainment 0.2
Viva Voce/Post Lab questions 60% of students will minimum score 60% marks	0.2	No. of students score >= 6/10	15	11	0.73	2	0.4
Lab Performance 70% students will minimum score 70% marks	0.2	No. of students score >= 14/20 in exp 3,4	17	16	0.94	3	0.6
End semester PR Examination 60% of Students with minimum score 60% marks	0.5	No. of students score >=17.5 /25 =	14	17	82.35	3	1.5
Indirect Method						sum	2.7
LAB Exit Survey 75% students strongly agree and agree	1	No. of students agree or strongly agree = No.of Respondents = 13	13	13	1.00	3	3

CO Attainment = 2.76

Levels	Attendance	Lab Performance	Viva voce	End same (TI)	
1 (Low)			viva voce	End sem exam(TH)	Survey
	70-80	70-80	60-70	60-70	75-80
2 (Medium)	81-90	81-90	71-80	71-80	
3 (High)	90 above	90 above	80 above	and the second se	81-85
		00 0000	ou above	81 above	86 above

FR. CONCEICAO RODRIGUES COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

S. J. Patr

Branch/Semester: ECS/VII Course: Deep Learning Lab (ECL703)

Academic Year: 2022-23

Lab outcome3 Attainment

ECL703.3 Build and train suitable deep learning models such as CNN, RNN, Auto-encoders, and, LSTM to solve a real-world problem

Direct Methods	Weightage	Successful students		Total No. Stud	Per(%)		Attainment
Attendance	0.1	Attendance >=7/10			rei(70)	Level	Auanment
70% of students will minimum score 70% marks	0.1		17	14	0.82	2	0.2
Viva Voce/Post Lab questions	0.2	No. of students score >= 6/10	45				
60% of students will minimum score 60% marks			15	12	0.80	3	0.6
Lab Performance	0.2	No. of students score >= 35/50 in exp 5,6,7,8,10	17				
70% students will minimum score 70% marks			17	11	0.65	1	0.2
End semester PR Examination	0.5	No. of students score >=17.5 /25 =				-	
60% of Students with minimum score 60% marks			14	17	82.35	3	1.5
Indirect Method							
LAB Exit Survey	1	No of students areas as the l			_	sum	2.5
75% students strongly agree and agree		No. of students agree or strongly agree =	13	13	1.00	3	3
To to students strongly agree and agree		No.of Respondents = 13					

CO Attainment = 2.6

Levels	Attendance	Lab Performance	Viva voce	End and (TII)	
1 (Low)				End sem exam(TH)	Survey
	70-80	70-80	60-70	60-70	75-80
2 (Medium)	81-90	81-90	71-80	71-80	and the second second second second
3 (High)	00 about			71-00	81-85
<u>- (</u>	90 above	90 above	80 above	81 above	86 above

FR. CONCEICAO RODRIGUES COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Branch/Semester: ECS/VII

S. J. Patel

Lab outcome4 Attainment

ECL703.4: Select and implement a suitable deep learning model to solve the real-world problem

Direct Methods	Weightage	Successful students		Total No. Stud	Per(%)	Level	Attainment
Attendance			17	14	0.82	1	0.2
70% of students will minimum score 70% marks	0.1	Attendance >=7/10			0.02		0.2
Viva Voce/Post Lab questions	0.2	No. of students score >= 6/10	15	13	0.87	3	0.6
60% of students will minimum score 60% marks							
Mini Project	0.1	No. of students score >=7 /10 in Ass1 =	17	16	0.94	3	0.3
70% students will minimum score 70% marks							
Case Study	0.1		17	16	0.94	3	0.3
70% students will minimum score 70% marks							
End semester PR Examination	0.5	No. of students score >=17.5 /25 =	14	17	82.35	3	1.5
60% of Students with minimum score 60% marks							
Indirect Method						sum	2.9
LAB Exit Survey	1	No. of students agree or strongly agree =	13	13	1.00	3	3
75% students strongly agree and agree		No.of Respondents = 13				1	

CO Attainment = 2.6

Levels	Attendance	Lab Performance	Viva voce	End sem exam(TH)	Survey
V2.	70-80	70-80	60-70	60-70	
1 (Low)	81-90	81-90	71-80	71-80	75-80
2 (Medium)	90 above	90 above			81-85
3 (High)		50 05070	80 above	81 above	86 above

S.J. Potl

					ECS BatchWIS	F. Attains	nent 2022	23 RATC	н							,
					ECS Datell W15	E Attaini	lient 2022-	23 DATC	n							+
			+													+
																+
			PO1									PO10	PO11	PO12		+
	COURSE ID	Course		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POIO	POIT	POIZ	PSO1	PSO2
	Applied Mathematics-I	FEC101	2.744													
	Applied Physics-I	FEC102	2.893													
	Applied Chemistry-I	FEC103	2.444													
2019-20	Engineeering Mechanics	FEC104	2.6793	2.67	2.721333333											
	Basic Electrical	FEC105	2.58	2.52												
	Engineering															
		FEL105	2.9		2.9		2.9	2.9			2.9					
	Basic Workshop practices I															
	Applied Mathematics-II	FEC201	2.624													
	Applied Physics-II	FEC202	3													
	Applied Chemistry-II	FEC203	2.258666667													1
	Engineering Graphics	FEC203	2.41													+
	C programming	FEC205	2.436	2.44	2.44											+
	Professional	FEC205	2.730	2.44	2.77							3				+
	Communication	FEC200	2.42	2.3		2.4						5				
	Communication	EEL 204	2.42	2.3	2.9	2.4	2.9	2.9			2.9					+
	Dasia Washahan maatiasa U	FEL206	2.9		2.9		2.9	2.9			2.9					
	Basic Workshop practices II	Eccant	2.5													<i>!</i>
	Applied Mathematics-III	ECC301	2.5													<i>!</i>
	Electronic Devices	ECC302	3	2.66	2	3	2									'
	Digital Electronics	ECC303	2.76	2.66	2	3	3								2	2
	Data Structures and	ECC304														
	Algorithms		3	2.66	3	3	2									′
	Database Management	ECC 305													3	
	Systems		2		3	3	3		2		3					
	Object Orineted	ECL305													1.6	2.4
	Programming with C++ and															1
2020-21	Java		2	2	3		3				2	2	3			
	Database Management	ECL306			2.55						1.6	1.6	2.4			
	Systems		2.46	1.6			2.56									
	MINI PROJECT 1A	ECM301	3	3	2	-	2	3	3	2	3	3	2	3	2.56	2.8
	AM-IV	ECC401	2.17													
	Electronic Circuits,	ECC402	1													
	Controls and	ECC403													-	-
	Instrumentation		3	3	-	0	0	0	0	0	0	0	0	0		
	Microprocessors and	ECC404	3	-	2	-	2					-	-			++
	Microcontrollers	200101			-		-									
	Discrete structures and	ECC405			2.55											+
	Automata Theory	Lectus	2.46	1.6			2.56									/
	Skill-based Lab Course:	ECL405	2.70	1.0			2.30									+
	Python programming	ECL405														
		ECM401	2	2	2	2	2	2	2	2	2	2	2			
	Mini-project -1 B	ECM401	3	3			2	3	3	2	3	3	2	3		───┦
	Communication	ECC501		2.6		2.6										
	Engineering	ECCENT	2.6													───┤
	Computer Organization and	ECC502		2.5												
	Architecture		2.5	2.5	2.5	2.5								1.98		↓ /
	Software Engineering	ECC503	2.5	1.98	2.6				2.6				2.6	2.6		

	Web Technologies	ECC504	2.96		3		2.92				2.97				3	
	0	Software														2.96
	ECC DO501	Testing and	2.84	2.94	3		3						3			
		Sensors and													3	2.76
2021-22	ECC DO 504	Application	2.9	3		3	2.76									
	ECL504	Professional										3				
	ECM501	Mini project	2.85	2.75	2.7		2.75	2.8	2.75	2.7	2.8	2.8	0	2.8	2.85	2.73
	ECC 601	Embedded		2.46	2.48	2.6	2.5	2.4		2.5					2.53	2.6
	ECC 602	Artificial	2.58	2.58	2.49	2.54		2.6								2.58
	ECC 603	Computer	2.7	2.84	2.84										2.84	
	ECC 604	Data	2.7	2.84	2.84		2.54				3	3	3	3	2.84	2.54
	ECC DO601	. Machine	2.44	2.52	2.18		2.48								1.3	
	ECL 604	Skill-based	3	3		2.98	2.98				3				2.92	
	ECM601	Mini Project	2.9	2.75	2.8		2.75	2.8	2.75	2.8	2.78	2.8		2.75	2.9	2.78
	VLSI Design	ECC701	2.8	2.8	1.8		1.8								0.8	1.8
	Internet of Things	ECC702	2.79	2.54	2.57		2.56	2.6	2.6	2.6			2.6		2.6	2.6
	Deep Learning	ECCDO701	2.57	2.55	2.55	2.48	2.5				2.44	2.44		2.44	2.55	2.55
		ECC														
	Big data Analytics	DO701(3)	2.229333333	2.210666667		2.32	2.04									
		ECCDO702(2.28				2.333333333	
	Blockchain technology	4)	2.24	2.28			2.36				-					
	Cloud Computing	ECCDO702	3	3	3	3	3	3	3					3		
	Management Information	ECCIO701			2						2					
2022-23	System	E CL BOA	2.0	2.0	3	2.0		3	3	3	3	3	3	3	2.0	2.0
	VLSI Design Lab	ECL701	2.8	2.8	2.8	2.8	2.7								2.8	2.8
	Internet of Things Lab Deep Learning Lab	ECL702 ECL703	2.76	2.76	2.7	2.79	2.7 2.76				2.92	2.93		2.92	2.8	2.7
	BIG Data Analytics Lab	ECL703 ECL703(3)		2.76	2.70	2.19	2.76				2.92	2.95		2.92	2.70	2.70
	Major Project - I	ECE703(3) ECP701	2.10	2.140000007	2.76	2.12	2.10	3	2.84	2	2.92	2.904	2.84	2.68	2.2	2.88
	Robotics	ECC 801	2.925	2.8375	2.9025	2.833	2.04		2.04	5	2.92	2.904	2.04	2.00	2.04	2.00
	Natural Language	ECCDO801	2.923	2.808	2.68	2.60533										
	Processing	ECCDOBOI	2.072	2.000	2.00	2.00555										
	System Security	ECCDO802	2.28	2.36	2.4					2.32						2.28
	Project Management	ECCIO801		3	3	3		3					3	3		
	Robotics Laboratory	ECL801	3	3	3	3	3									
	Natural Language	ECL802													2.92	2.92
	Processing lab		2.95	2.94	2.92	5.84	2.93				2.92	2.92		2.92		
	Major Project - II	ECP801	3	3	3	3	2.2	2.36	2.36	3	3	3	3	2.52	2.744	2.65
DIREC	SUM of Direct PO and PSO															
Т	attainment		147.4853	112.7588333	108.3338333	71.2483	87.45	39.36	32.4	25.92	52.43	41.394	32.44	41.61	60.68733333	52.09
	Count N (Subjects Mapped															
NMENT	to each PO)		55	43	42	27	35	15	13	11	20	16	14	16	25	21
	Average of direct PO and															
	PSO attainmnet		2.681550909	2.62229845	2.579376984	2.63883	2.49857	2.624	2.49231	2.35636	2.6215	2.58713	2.31714	2.60063	2.427493333	2.48048
1 1	Indirect PO Attainment				_	_	_	_	_	_	_		_	_		
CT	(graduate Exit Survey)		3	3	2	2	3	3	3	3	2	3	3	3		
	Alumni Exit survey															
	Indirect PO attainmnet		2 52200052 1	2 5 5 7 6 9 2 9 9		0.075		2 10102		2 2 4 2 4 2	2 20002	0.100/0	2 2010			0.071.42
	(Events)		2.523809524	2.557692308	2.55	2.375	2.2	2.18182	2.33333	2.24242	2.30902	2.12069	2.2069	2.24444	2.16	2.07143
Average Indirect PO & PSO attainment (Graduate Exit Survey & Alumni Exit Survey & Events)																
--	-------------	-------------	-------------	---------	---------	---------	---------	---------	---------	---------	---------	---------	-------------	---------		
•	2.761904762	2.778846154	2.275	2.1875	2.6	2.59091	2.66667	2.62121	2.15451	2.56034	2.60345	2.62222	2.16	2.07143		
Average PO Attainment																
(0.8*Direct+0.2*Indirect)	2.69762168	2.65360799	2.518501587	2.54856	2.51886	2.61738	2.52718	2.40933	2.5281	2.58177	2.3744	2.60494	2.373994667	2.39867		
Total Subjects: 82																

FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Production Engineering

Department of Froutenon Engineering

B.E. (Production) (semester VII) (2022-2023)

Lecture Plan

Credits

Subject: Product Design and Industrial Marketing (PEDLO8011)

-03

1. Syllabus.

Module	Contents	Hrs.
01	 Introduction: Definition of product design, Classification of products, Design by evolution, Design by innovation, Product Mix, Various phases in product development and Design, Morphology of Design, Considerations in product design, Product specifications. Conceptual Design: Market research, Generation, Selection and Embodiment of concept, Product Architecture, Customer centric product designing Creativity: Role of creativity in problem solving, Vertical and lateral thinking, Brain storming, Synectics, Group working dynamics, Adaptation to changing scenarios in economics, social, cultural and technological fronts, Anticipation of new needs and aspirations. Materials: Overview of materials including new generation materials, Tailor made material concepts, Material selection process. 	06
02	 2.1. Design for manufacturing (DFM): Guidelines and Methodology, Producibility requirements, Accuracy and Precision requirements, Strength considerations in Design: Criteria and objectives, Designing for uniform strength, Designing for stiffness and rigidity, Practical ideas for material saving in design - ribs, corrugations, rim shapes, bosses, laminates, etc. 2.2. Design for forged and Cast components, Design for Sheet Metal processed components, powder metallurgical components, Expanded metals and wire forms 	12

	 2.3. Designing with plastics: Mechanical behavior, special characteristics and considerations, Design concepts for product features to be manufactured by various production process technologies, Special considerations for designing of components for load bearing applications, 2.4. Other DFX Principles : Designs for Maintainability, Safety, Reliability, Sustainable Design 2.5. Design for Assembly (DFA): DFA Index, Analysis of assembly requirements, Standardization, Ease of Assembly and disassembly, Design for bolted, welded and riveted components, Design for hinge and snap fit assemblies, maintenance, consideration of handling and safety, Modular concepts. 3.1. Product Ergonomics: Anthropometry, Environmental conditions, thermal, noise, vibration, displays, illusions, Psycho 	
03	 and psychological aspects in design, Man-machine information exchange. 3.2. Product Aesthetics: Visual awareness, Form elements in context of product design, Concepts of size, shape and texture, Introduction to colour and colour as an element in design, Colour classifications and dimensions of colour, Colour combinations and colour dynamics, Interaction / communication of colours, Psychological aspects of colours, generation of products forms with analogies from nature. 3.3. Product Graphics: Graphics composition and layout, Use of grids in graphics composition, Study of product graphics and textures. 	06
04	 4.1. Value Engineering: Product value and its importance, Value analysis job plan, Steps to problem solving and value analysis, Value analysis tests, Value Engineering idea generation check list, Material and process selection in value engineering, Cost reduction, case studies and exercises. 4.2. Software solutions: Software for drafting, modeling, assembly, detailing, CAM interfacing, Rapid tooling/rapid prototyping, etc. 4.3. Modern Applications: Concurrent Engineering, Robust Design, Additive Manufacturing/Rapid Prototyping, Product Life Cycle Management techniques and application areas. 	08
05	Introduction to Industrial Marketing, Understanding Industrial Markets, Nature of Industrial Buying, Industrial Market Segmentation, New Products and Established product strategies, Resource based and Value based strategy, Industrial Pricing: Price Determinants, Pricing Policies, Pricing Decisions, Pricing - Value based and Competition based.	08
06	 6.1. Industrial Marketing Channels: Channel participants, Channel effectiveness, Marketing logistics, Physical Distribution and Marketing Strategy, Value added market channels 6.2. Industrial Marketing Communication, Advertising, Sales promotion, Publicity Media Plan, Integrated Promotion Plan, Industrial Sales force Management, Technical Support for Marketing – customer technical services and feedback. 	08

2. CO Statements.

Learner will be able to

PEDLO8011.1. Design and develop products right from the conceptual level.

PEDLO8011.2. Demonstrate concept of computer aided product design approach.

PEDLO8011.3. Illustrate various modern approaches like concurrent engineering, product life cycle management, robust design, rapid prototyping / rapid tooling.

PEDLO8011.4. Analyze products based on ergonomics and aesthetic aspects.

PEDLO8011.5. Apply appropriate strategies in industrial marketing.

PEDLO8011.6. Demonstrate various aspects related to Industrial Marketing Communication, Advertising, Sales promotion, Publicity Media Plan.

3. CO-PO-PSO Mapping.

CO# / PO#	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
PEDLO8011.1	3	3	3	-	-	-	-	-	-	-	-	-
PEDLO8011.2	3	3	3	-	-	-	-	-	-	-	-	-
PEDLO8011.3	3	3	3	-	2	-	-	-	-	-	-	-
PEDLO8011.4	3	3	3	-	-	-	-	-	-	-	-	-
PEDLO8011.5	3	3	3	-	-	-	-	-	-	-	-	-
PEDLO8011.6	3	3	3	-	-	-	-	-	-	-	-	-

CO# / PSO#	PSO1	PSO2
PEDLO8011.1	3	-
PEDLO8011.2	3	-
PEDLO8011.3	3	2
PEDLO8011.4	3	-
PEDLO8011.5	3	-
PEDLO8011.6	3	-

4. CO Assessment tools with target.

	Target for Assessment Tools								
	Unit Test	End Semester	Course Exit						
		Exam	Survey						
PEDLO8011.1	60%	60%	70%						
PEDLO8011.2	-	60%	70%						
PEDLO8011.3	60%	60%	70%						
PEDLO8011.4	-	60%	70%						
PEDLO8011.5	60%	60%	70%						
PEDLO8011.6	60%	60%	70%						

5. Curriculum Gap/Content beyond syllabus (if any).

DOE and ANOVA, RSM, Industry 4.0

6. Lecture/Lab/Mini Project/Assignment Plan.

Week	Durati on (Hrs.)	Торіс	Module
1 (18.07.22 - 24.07.22)	3	Introduction: Definition of product design, Classification of products, Design by evolution, Design by innovation, Product Mix, Various phases in product development and Design, Morphology of Design, Considerations in product design, Product specifications.	
2 (25.07.22 - 31.07.22)	3	1.2. Conceptual Design : Market research, Generation , Selection and Embodiment of concept,	1
3 (1.08.22 - 7.08.22)	3	Product Architecture, Customer centric product designing Materials: Overview of materials including new generation materials, Tailor made material concepts, Material selection process	1

		Design for manufacturing (DFM): Guidelines and	
	3	Methodology, Producibility requirements, Accuracy and	
(8.08.22 - 14.08.22)		Precision requirements, Strength considerations in	1
		Design: Criteria and objectives, Designing for uniform	
		strength, Designing for stiffness and rigidity, Practical	
		ideas for material saving in design - ribs, corrugations,	
		rim shapes, bosses, laminates, etc.	
		2.5. Design for Assembly (DFA): DFA Index, Analysis	
		of assembly requirements, Standardization, Ease of	
		Assembly and disassembly	
		Design for bolted, welded and riveted components,	
		Design for hinge and snap fit assemblies, maintenance,	
		consideration of handling and safety, Modular concepts.	
		2.2. Design for forged and Cast components, Design	
5		for Sheet Metal processed components, powder	
(15.08.22 - 21.08.22)	3	metallurgical components, Expanded metals and wire	2
()		forms	
		2.4 Other DFX Principles : Designs for	
		Maintainability, Safety, Reliability, Sustainable Design	
		2.3 Designing with plastics: Mechanical behavior,	
		special characteristics and considerations, Design	
		concepts for product features to be manufactured by	
		various production process technologies, Special	
		considerations for designing of components for load	
		bearing applications	
		Product Ergonomics: Anthropometry, Environmental	
		conditions, thermal, noise, vibration, displays, illusions,	
		Psycho and psychological aspects in design,	
		Man-machine information exchange.	
6		3.2. Product Aesthetics : Visual awareness, Form	
(22.08.22 - 28.08.22)	3	elements in context of product design, Concepts of size,	2
(22.00.22 20.00.22)		shape and texture, Introduction to colour and colour as	
		an element in design, Colour classifications and	
		dimensions of colour, Colour combinations and colour	
		dynamics, Interaction / communication of colours,	
		Psychological aspects of colours, generation of products	
		forms with analogies from nature.	
		3.3 Product Graphics : Graphics composition and	
		layout, Use of grids in graphics composition, Study of	
		product graphics and textures.	
7	3	Value Engineering: Product value and its importance,	3
(29.08.22 - 4.09.22)		Value analysis job plan, Steps to problem solving and	5
		value analysis job plan, steps to problem solving and value analysis, Value analysis tests, Value Engineering	
		idea generation check list, Material and process selection	
		in value engineering, Cost reduction, case studies and	
		exercises.	
		0.0000000000000000000000000000000000000	

		Unit Test – 1	
8 (5.09.22 - 11.09.22)			
) 12.09.22 - 18.09.22)	3	Modern Applications: Concurrent Engineering, Robust Design, Additive Manufacturing/Rapid Prototyping, Product Life Cycle Management techniques and application areas	4
10 (19.09.22 – 25.09.22)	3	Content Beyond Syllabus: DOE and ANOVA, RSM, industry 4.0 Software solutions: Software for drafting, modeling, assembly, detailing, CAM interfacing, Rapid tooling/rapid prototyping, etc.	4
11 (13.09.21 - 19.09.21)		Introduction to Industrial Marketing, Understandin Industrial Markets, Nature of Industrial Buying, Industria Market Segmentation, New Products and Establishe product strategies,	al
12 (26.09.22 – 2.10.22)	3	Resource based and Value based strategy, Industrial Pricing: Price Determinants, Pricing Policies, Pricing Decisions, Pricing - Value based and Competition based	
13 (3.10.22 - 9.10.22)	3	6.1. Industrial Marketing Channels: Channel participants, Channel effectiveness, Marketing logistics, Physical Distribution and Marketing Strategy, Value added market channels	6
14 (10.10.22 - 16.10.22)	3	6.2. Industrial Marketing Communication, Advertising, Sales promotion, Publicity Media Plan, Integrated Promotion Plan, Industrial Sales force Management, Technical Support for Marketing – customer technical services and feedback.	6
15 (17.10.22 - 23.10.22)	Unit Tes	t - 11	

-

Atism Dr. Vasim Shaith Program Coordinator (mech) & DQAC member

with

Dr. Ketali Joshi Subject teacher.

77

PEDLO803	PEDL08011 Product Design and Industrial Marketing														
									appin						
CO Statement	CO Attainment	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO1	PSO2
PEDLO8011.1. Design and develop products right from the conceptual level.	2.04	3	3	3	-	-	-	-	-	-	-	-	-	3	-
PEDLO8011.2. Demonstrate concept of computer aided product design approach.	1.4	3	3	3	-	-	-	-	-	-	-	-	-	3	-
PEDLO8011.3. Illustrate various modern approaches like concurrent engineering,		3	3	3	-	2	-	-	-	-	-	-	-	3	2
product life cycle management, robust design, rapid prototyping / rapid tooling.	1.08														
PEDLO8011.4. Analyze products based on ergonomics and aesthetic aspects.	1.4	3	3	3	-	-	-	-	-	-	-	-	-	3	-
PEDLO8011.5. Apply appropriate strategies in industrial marketing.	1.4	3	3	3	-	-	-	-	-	-	-	-	-	3	-
PEDLO8011.6. Demonstrate various aspects related to Industrial Marketing		3	3	3	-	-	-	-	-	-	-	-	-	3	-
Communication, Advertising, Sales promotion, Publicity Media Plan.	1.4														
Course Attainment		1.45	1.45	1.45	-	1.08	-	-	-	-	-	-	-	1.45	1.08

CO1	UT	Univ TH			
weightage	40%	60%			
attainment	3	1			
Direct Attainment	1.8				
CES Attainment	3				
Weightage	Direct	CES			
	80%	20%			
Final Attainment	2.04				

Univ T				
	100%			
	1			
1				
3				
Direct	CES			
80%	20%			
1.4				
	Direct 80%			

UT	Univ TH
40%	60%
0	1
0	.6
3	
Direct	CES
80%	20%
1.	08
	40% 0 3 Direct 80%

CO4		Univ TH
weightage		60%
attainment		1
Direct Attainment		1
CES Attainment	3	
Weightage	Direct	CES
	80%	20%
Final Attainment	1	.4

CO5	UT	Univ TH
weightage	40%	60%
attainment	1	1
Direct Attainment		1
CES Attainment	3	
Weightage	Direct	CES
	80%	20%
Final Attainment	1	.4

CO6	UT	Univ TH
weightage	40%	60%
attainment	1	1
Direct Attainment		1
CES Attainment	3	
Weightage	Direct	CES
	80%	20%
Final Attainment	1	.4

SI.No	Roll No	Name	UT1Q1	UT1Q2	UT2Q1	UT2Q2	UNIV TH			CE	s		
		Co Mapping	C01	CO3	C01	CO5,6	ALL	CO1	CO2	CO3	CO4	CO5	CO6
1	8494		7	6	8	5	21	4	4	4	4	4	4
2	8519		10	6	9	5	36	4	5	4	4	4	4
3	8525	RAYTEANIKETSANDIP	7	7	9	10	59	4	4	4	3	3	3
4	8775	BANDYASHVIJAY	5	6	6	7	14	4	4	4	4	4	4
5	8777	FERNANDESRANEN	10	9	9	10	58	4	5	5	5	4	4
6	8778	JADHAVSHUBHAMSAMBHAJI	10	5	8	5	62	5	5	5	5	5	5
7	8779		10	8	8	10	67	4	5	4	5	5	5
8			10	7	8	8	56	4	3	3	4	3	3
9		/LOUISVAILANKAFLEUR	10	9	9	8	65	4	4	4	5	4	4
10	8782	•	10	5	9	6	65	3	4	3	2	3	3
11	8783		5	5	8	10	49	4	5	5	5	4	4
12	8784	MARDEADVAITBHUSHAN	10	8	9	5	61	5	5	5	5	5	5
13	8785	NADARUPKAR	9	10	8	10	65	4	4	5	4	4	3
14	8786		9	8	8	10	63	4	4	4	4	4	4
15 16	8787 8788	PAGARVISHALSANJAY PARABOMKARARUN	8 10	4	8	10	61 49	5	5	4	4	4	5
10	8789	PARABONIKARAKUN PATTANIHARSHDILIP	3	5	9	5	49	4	5	4	3	3	3
18	8790		10	10	10	7	63	4	4	5	5	5	5
18	8790	SHARMAANMOLASHOKKUMAR	9	0	6	5	48	4	4	4	4	4	4
20	8791		10	10	6	5	48 50	5	5	5	5	5	5
20	8792		10	9	8	10	68	4	3	4	4	4	4
21	8794	/SOLANKIDIMPLEKUNWARMADANSINGH	10	10	9	10	61	5	5	5	5	5	5
22	8795	TANDALEPRANAVSACHIN	9	7	8	10	55	5	5	5	5	5	5
23	9035	AHIRWARSHANIKUMARBHIMRAJ	5	8	9	8	47	4	4	4	4	4	4
24	9036		10	3	8	7	47	4	4	4	5	5	5
26	9037	DURGAWALEPRASHILMUKUND	6	8	4	5	50	4	4	4	4	4	4
20	9038	GANDHIUMANGSUHAS	9	8	9	8	67	4	5	4	5	5	5
28	9039		0	8	9	5	38	4	4	4	4	5	5
29	9040		9	10	8	5	54	5	4	4	4	5	5
30	9041	KHANAHSAANAYUB	5	3	8	10	41	5	5	5	5	5	5
30	9041	KHANSALMANFIROZ	10	5	8	5	41	3	4	3	4	4	4
31	9042	KHEDEKARPRATHMESHPRADIP	5	9	8	7	56	4	4	4	4	4	4
32	9043	KONARARUMUGAMSUDALAIMANI	10	8	8	10	38	5	5	5	3	3	3
33	9045	LOBOJOELJOACHIM	9	1	7	10	52	4	4	4	4	4	4
35	9045		10	5	8	5	53	5	4	3	3	4	4
35	9040	MACHADOSHILDONSIMON	10	10	8	10	59	3	4	4	5	4	4
37	9048		10	8	8	5	38	4	3	4	4	3	3
38	9049		10	2	8	10	32	5	5	5	5	5	5
39	9050		10	4	9	10	54	4	3	3	4	3	3
40	9051	NAIKRUSHIKESHSHAILESH	5	4	8	10	48	3	4	3	4	3	3
40	9052	PANCHALASHISHVINODKUMAR	10	5	8	10	66	1	1	2	2	2	2
42	9053		10	4	8	9	32	4	4	5	4	5	5
43	9054	PARADKARRUGVEDSURENDRA	10	8	9	5	54	5	5	4	4	4	4
44	9055		10	9	8	10	41	4	4	4	4	4	4
45	9056		5	0	8	5	41	4	4	4	4	4	4
46	9057	PAWAROMKARSANJAY	4	1	8	10	43	5	5	5	5	5	5
47	9058	/POLSONIAMAHENDRA	10	5	10	10	41	5	5	5	5	5	5
48	9059	RANEHEMANSHUASHOK	5	4	9	10	19	4	4	4	4	4	4
49	9060	SHAIKHAADILZIAULHAQ	8	7	9	5	42	4	3	4	4	3	3
50		SHETKARDEEPENVILAS	7	7	9	5	51	5	4	4	4	2	2
51	9062	SHETTYAAKASHAVINASH	10	3	8	5	50	4	4	4	3	3	3
52	9063		10	8	9	10	57	4	4	4	3	3	3
53			7	9	8	8	60	4	4	4	4	4	4
54	9065		8	9	8	10	42	5	4	5	5	5	5
55			7	5	8	8	37	5	5	5	5	5	5
55	5000	Number of Students	, 55					-	-		-	-	-
		Target	6	6	6	6	48	3	3	3	3	3	3
	Nu	mber of Students above target	44	32	54	37		54	54	54	53	53	53
		% of students above target	80	58.18	98.18	67.27		98.18	98.18	98.18	96.36	96.36	96.36
		attainment	3					3	3	3	3	3	3
		acconnent	J	0	5		1		5	5	3	5	5

PO_Attainment_Production Engineering															
COURSE	Course code	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSD1	PSO2
Engineering Mathematics - I	FEC101	2.2	0	0	0	0	0	0	0	0	0	0	0	0	0
Engineering Physics - I	FEC102	2.6	0	0	0	0	0	0	0	0	0	0	0	0	0
Engineering Chemistry - I	FEC103	2.29	0	0	0	0	0	0	0	0	0	0	0	0	0
Engineering Mechanics	FEC104	2.48	2.49	2.47	0	0	0	0	0	0	0	0	0	0	0
Basic Electrical & Electronics Engineering	FEC105	2.6	2.54	0	0	0	0	0	0	0	0	0	0	0	0
Engineering Mathematics-II	FEC201	2.04	0	0	0	0	0	0	0	0	0	0	0	0	0
Engineering Physics-II	FEC202	2.88	0	0	0	0	0	0	0	0	0	0	0	0	0
Engineering Chemistry -II	FEC203	2.28	0	0	0	0	0	0	0	0	0	0	0	0	0
Engineering Graphics	FEC204	2.4	2.4	2.4	0	0	0	0	0	0	2.4	0	0	0	0
C-Programming	FEC205	2.2	2.25	2.25	0	0	0	0	0	0	0	0	2.2	0	0
Professional Communication and Ethics 1	FEC206	0	0	0	0	0	0	0	0	0	3	0	0	0	0
Basic Workshop Practice 1 & 2	FEL105/	2.9	0	2.9	0	2.9	2.9	0	0	2.9	0	0	0	0	0
Engineering Mechanics Lab	FEL103	2.9	2.9	2.88	0	0	0	0	0	0	0	0	0	0	0
Engineering Mathematics III	PEC301	3	0	0	0	0	0	0	0	0	0	0	0	0	0
Applied Thermodynamics	PEC302	3	3	0	0	0	0	0	0	0	0	0	0	0	0
mechanics of materials	PEC303	3	3	3	0	0	0	0	0	0	0	0	0	0	0
manufacturing process	PEC303 PEC304	3	3	3	0	0	0	0	0	0	0	0	3	3	0
Engineering Materials and	PEC304 PEC305	3	3	3	0	3	0	0	0	0	0	0	3	3	0
	PEC305 PEL301	3	3	3	÷	0					0		3		0
Computer Aided Machine		-	-	-	0		0	0	0	0	-	0	-	3	÷
Python Lab	PEL302	2.48	2.45	2.3	2.29	0	0	0	0	0	0	0	0	2.48	0
Material testing lab	PEL303	3	3	3	3	3	0	0	0	0	ů	0	0	0	0
Skill based lab 1/2	PEL304	3	3	0	0	0	0	0	0	0	0	0	0	3	0
Engineering mathematics -IV	PEC401	3	0	0	0	0	0	0	0	0	0	0	0	0	0
Mould and Metal Forming	PEC402	3	3	3	0	0	0	0	0	0	0	0	0	0	0
Theory of Machines	PEC403	3	3	0	0	0	0	0	0	0	0	0	0	0	0
Theory of Machines lab	PEL402	3	3	3	0	0	0	0	0	0	0	0	0	0	0
Applied Electrical and	PEL403	3	3	3	0	0	0	0	0	0	0	0	0	0	0
Advanced Manufacturing	PEC405	3	3	0	3	0	0	0	0	0	0	0	0	0	0
Mould and Metal Forming	PEL401	3	3	3	0	0	0	0	0	0	0	0	0	0	0
Applied Electrical and	PEC404	3	3	3	0	0	0	0	0	0	0	0	0	0	0
Production Tooling	PEC501	3	3	3	3	3	3	3	0	0	0	0	3	3	0
Production Tooling lab	PEL501	3	3	3	3	3	3	3	0	0	0	0	3	3	0
Machine Design - I	PEC502	3	3	3	0	0	0	0	0	0	0	0	0	3	0
Machine Design - I lab	PEL502	3	3	3	0	0	0	0	0	0	0	0	0	3	0
Metrology & Quality	PEC504	2.4	2.4	2.4	2.4	2.4	2.4	0	0	2.4	2.4	0	2.4	2.4	0
Metrology & Quality	PEL504	3	3	0	0	0	0	0	0	0	0	0	0	3	0
Machining Science and	PEC503	3	3	3	0	0	0	0	0	0	0	0	3	3	0
Machining Science and	PEL503	3	3	3	0	0	0	0	0	0	0	0	3	3	0
DLOC - Sustainable Manufacturing	PEDO5012	0	0	3	0	0	3	3	3	3	3	3	3	3	3
Professional Communication and Ethics-II	PEC602	2.67	2.67	2.67	0	0	0	0	3	3	3	0	2.67	2.67	0
process Engineering	PEC601	3	3	3	0	0	0	0	0	0	0	0	3	3	0
process Engineering Lab	PEL601	3	3	3	0	0	0	0	0	0	0	0	3	3	0
Operations research	PEC604	2.8	2.8	2.8	2.8	2.8	2.8	2.8	0	2.8	0	2.8	2.8	2.8	0
Industrial Engineering	PEC603	0	0	0	0	0	0	3	0	3	0	3	0	0	0
DLOC - Logistics and Supply Chain Management	PEDO6014	0	0	0	0	0	0	3	0	3	0	3	0	0	0
DLOC- Rapid prototyping	PEDO6013	3	3	3	0	0	0	0	0	0	0	0	0	0	0
Additive mfg lab	PEL603	3	3	3	0	0	0	0	0	0	0	0	0	0	0
Data Analytics lab	PEL604	3	3	3	0	3	0	0	0	0	0	0	0	0	0
Machine Design - II	PEC602	2.67	2.67	2.67	0	0	0	0	3	3	3	0	2.67	2.67	0
Machine Design - II Machine Design - II lab	PEC602 PEL602	2.67	2.67	2.67	0	0	0	0	0	0	0	0	2.67	2.67	0
product design and industrial marketing	PEDO8012	1.45	1.45	1.45	0	0	0	0	0	0	1.48	0	1.48	1.45	0
		2.25	2.25	2.25	2.58	-		÷		-	-		2.23	2.26	
Automation & Control	PEC801					2	0	0	0	0	0	0			2
Automation & Control	PEL801	2.67	2.67	2.67	2.6	2.4			0	0	÷	0	2.67	2.67	2.6
Computer Aided Engineering	PEC802	3	3	0	0	0	0	0	0	0	0	0	3	3	0
Computer Aided Engineering Lab	PEL802	3	3	0	0	0	0	0	0	0	0	0	3	3	0
Engg Economics, Finance, Costing Accounting	PEC803	0	0	0	0	0	0	0	0	0	0	3	0	0	0
ILOC - Finance Management	ILO8022	0	0	0	0	0	0	0	0	0	0	3	0	3	0

Industrial Training and B.E. Project	PEC701	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Direct Attainment Indirect Attainment		2.78 3	2.82 3	2.8 3	2.74 3	2.75 3	2.85 3	2.97 3	3 3	2.89 3	2.61 3	2.97 3	2.75 3	2.81 3	2.53 3
Final Attainment		PO1 2.82	PO2 2.86	PO3 2.84	PO4 2.79	PO5	PO6	PO7 2.98	PO8	PO9 2.91	PO10 2.69	PO11 2.98	PO12 2.8	PSD1 2.85	PSO2 2.62
					PO/PS		nment P h 2019-2			neering					
				2.82	2.86 2.84	2.79 2.8	2.98	3 2.91	2.98	2.8	2.62				
				20 ² ,	²⁰¹ 203 ,	804 802	20° 20'	^{ره} ره د	0 ¹⁰ 80 ¹ 4	202 250, 4	regol				

Bandra Mumbai -400 050

Lesson	P	lan
EC33011		u

Branch: Mechanical Engineering Semester VII

Year: 2022-23

Course Title:	Design of Mechanical Systems 4 Hours – Theory & Oral/Practical Examination
Total Contact Hours: 48 Hours	Duration of ESE: 3 Hrs
ESE Marks: 80 (Theory) + 20 (IA)	
Lesson Plan Author: Dr. Ketaki Joshi	Date:
Checked By: Dr. Varim Shakt	Date: 25 07 2023

Prerequisites: Machine Design. Material Science Syllabus:

Module	Contents	Hours				
1.	Methodology & Morphology of design, Optimum design, system concepts in design.	03				
	Design of Transmission Gene Boxs	1.5.5				
2	Single stage and Two stage Gear box with fixed ratio consisting of Design of spur, helical, bevel and worm and wormwheel gear pairs, Gear box housing layout and housing design.	08				
	Design of Hoisting Mechanism:					
3.	Design of Snatch Block Assembly including Rope Selection, Sheave, Hook, Bearing for hook, cross piece, Axle for sheave and shackle plate, Design of rope drum, selection motor with transmission system.	08				
J-2 9.24	Design of Belt Conveyors :					
4	Power requirement, selection of belt, design of tension take up unit, idler pulley	04				
e	Engine Design (Petrol and Diesel):	12.192				
5.	Design of cylinder, Piston with pin and rings, connecting rod & crank shaft with bearings	80				
	Design of Pump:					
	5.1 Design of main components of gear pump.					
	1 Motor selection					
	2 Gear design					
6.	3 Shaft design and bearing selection	08				
	4 Casing and bolt design					
	5 Sizing of design of suction and delivery pipe					
	5.2 Design of main components of Centrifugal Pump:					
	1 Motor selection	1.4				
	2 Suction and Delivery pipe	T				
	3 Design of Impeller, Impeller shaft	Leges				
	4 Design of Volute Casing	ban Bark				

Course Outcomes (CO):

On successful completion of course learner will be able to:

MEC701.1. Apply the concept of system design.

MEC701.2. Select appropriate gears for power transmission on the basis of given load and speed

MEC701.3. Design material handling systems such as hoisting mechanism of EOT crane,

MEC701.4. Design belt conveyor systems

MEC701.5. Design engine components such as cylinder, piston, connecting rod and crankshaft MEC701.6. Design pumps for the given applications

CO-PO Mapping; (DL - Dioons Taxonomy, C - Competency, PI - Performance	C – Competency, PI – Performance Indicator)	Taxonomy, C	- Blooms	O-PO Mapping: (B
--	---	-------------	----------	------------------

co	BL	C	PI	PO	Mapping
MEC701.1	3	1.3	1.3.1	PO1	3
		1.4	1.4.1		
		2.1	2.1.2	PO2	3
			2.1.3		
	1	2.2	2.2.1		
		2.41	2.4.1		
	1.0				
		3.2	3.2.3	PO3	3
		3.3	3.3.2		
		3.4	3.4.1		
MEC701.2	3	1.3	1.3.1	PO1	3
MECIOILZ		1.4	1.4.1		
		2.1	2.1.2	PO2	3
			2.1.3		
		2.2	2.2.1		
		2.41	2.4.1	1	
		3.2	3.2.3	PO3	3
		3.3	3.3.2		
		3.4	3.4.1		-
		6.2	6.2.1	PO6	2
	1	8.2	8.2.2	PO8	2
NEC701 2	3	1.3	1.3.1	PO1	3
MEC701.3		1.4	1.4.1		
		2.1	2.1.2	PO2	3
			2.1.3		
	1	2.2	2.2.1		
	ł	2.41	2.4.1		
		3.2	3.2.3	PO3	3
		3.3	3.3.2		
		3.4	3.4.1		
a to sha when a		6.2	6.2.1	P06	2
		8.2	8.2.2	PO8	2
	3	1.3	1.3.1	PO1	3
MEC701.4		1.4	1.4.1		E
Contract of the second s		2.1	2.1.2	PO2	3
			2.1.3		
	No. CO	2.2	2.2.1	35.	

					-
		2.41	2.4.1		
		3.2	3.2.3	PO3	3
		3.3	3.3.2		5345
		3.4	3.4.1		
		6.2	6.2.1	P06	2
		8.2	8.2.2	PO8	2
MEC701.5	3	1.3	1.3.1	PO1	3
	1	1.4	1.4.1		
		2.1	2.1.2	PO2	3
	8		2.1.3		
		2.2	2.2.1		
		2.41	2.4.1		
		-			
		3.2	3.2.3	PO3	3
		3.3	3.3.2		
	1	3.4	3.4.1		
		6.2	6.2.1	P06	2
3 °		8.2	8.2.2	PO8	2
MEC701.6	3	1.3	1.3.1	PO1	3
		1.4	1.4.1		
		2.1	2.1.2	PO2	3
			2.1.3	8	
		2.2	2.2.1		
		2.41	2.4.1		
		3.2	3.2.3	PO3	3
		3.3	3.3.2		
		3.4	3.4.1		
		6.2	6.2.1	PO6	2
		8.2	8.2.2	PO8	2

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
MEC701.1	3	3	3									
MEC701.2	3	3	3			2		2				
MEC701.3	3	3	3			2		2				
MEC701.4	3	3	3			2		2				
MEC701.5	3	3	3			2		2				
MEC701.6	3	3	3			2		2				

CO-PSO Mapping:

	PSO1	PSO2
MEC701.1		10
MEC701.2		

Bandra Mumbal -400 050

MEC701.3	
MEC701.4	
MEC701.5	
MEC701.6	

CO attainment value for students above targets values:

CO	Tool	Target V	Target Value %		
		Marks	Students		
MEC701.1	Test	50%	60	1	
MEC701.2	1 cot		70	2	
MEC701.3			80	3	
MEC701.4	ESE	40%	60	1	
MEC/01.4	1.515	1070	70	2	
			80	3	
	CES	60%	60	1	
	CES	0010	70	2	
			80	3	
MEC701.5	ESE	40%	60	1	
MEC701.6	100		70	2	
MEC/01.0			80	3	
	CES	60%	60	1	
		3	70	2	
			80	3	

		Direct Method						
	Test	Lab	Assignment	ESE (O)	ESE (T)			
MEC701.1	60%				40%]		
					40%	1		
MEC701.2	60%		-		40%	1		
MEC701.3	60%				40%			
MEC701.4	60%					1		
MEC701.5	-				100%			
MEC701.6					100%			

CO Measurement Weightages for Tools:

gen die d		Indirect Method				
			80%			Course Exit
	Test	Lab	Assignment	ESE (O)	ESE (T)	Survey
		LUO			60%	20%
MEC701.1	40%				60%	-
MEC701.2	40%				The second se	-
MEC701.3	40%				60%	
	and the second designed to the second data and the		and the state of the		60%	
MEC701.4	40%	Constant of the Owner			100%	
MEC701.5					AND IN COLUMN TWO IS NOT THE OWNER.	- 116
MEC701.6					100%	

Attainment:

CO MEC701.1: **Direct Method** CONSCRIME = 0.4 * Test + 0.6* ESE(T) Indirect Method COMICION SIM = CES Final CO COMECTER := 0.8 * COMECTER STAY * 0.2* COMECTER STAY

CO MEC701.2:

Direct Method COMICTOS 20M = 0.4 * Test + 0.6* [SI(T) Indirect Method COMER 701 2HM = CES Final CO COMECTER 3 = 0.8 * COMECTER STAR * 0.2* COMECTER STAR

Direct Method

COMECTOS BOM = 0.4 * Test + 0.6* 154 (T) Indirect Method COMECTOL BIM * CES Final CO COMECTOR & O.R * COMECTOR ADM * 0.2* COMECTOR ANY

Direct Method

COMECTOL ADM = 0.4 * Test = 0.6* [St (7) **Indirect Method** COMECTOLAIM = CES Final CO COMECTOL # = 0.8 * COMECTOL HIN * 0.2* COMECTOL HIN

Direct Method COMECTOL SOM = ESE(T) Indirect Method COMECTOL SIM = CES Final CO COMECTOLS = 0.8 * COMECTELSON + 0.2* COMECTELSON

Direct Method COMECTOL 60M = ESE(T) Indirect Method COMECTOL SIM = CES Final CO COMECTOL 6 = 0.8 * COMECTOL 60M + 0.2* COMECTOL 6M

Course Level Gap (if any):

Content beyond Syllabus:

Lecture Plan:

Week (Hrs.)		Topic	Modul e		
1 (18.07.22 - 24.07.22)	4 Module 1 Methodology & Morphology of design, Optimum design system concepts in design. Module 2 Design of Transmission Gear Box: Introduction				
2 (25.07.22 - 31.07.22)	4	Module 2 Single stage and Two stage Gear box with fixed ratio consisting of Design of spur Gear box	2		
3 (1.08.22 - 7.08.22)	4	housing layout and housing design	2		
4 (8.08.22 - 14.08.22)	3	helical, bevel and worm and worm wheel gear pairs Design of Hoisting Mechanism: Design of Snatch Block Assembly including Rope Selection	2 and 3		
5 (15.08.22 - 21.08.22)	3	Sheave, Hook, Bearing for hook, cross piece, Axle for sheave and shackle plate,	3		
6 (22.08.22 - 28.08.22)	4	Design of rope drum, selection motor with transmission system. revision	3		
7 (29.08.22 - 4.09.22)		Mid Term Break			
8 (5.09.22 - 11.09.22)		Unit Test – 1			
9 Design (12.09.22 - 18.09.22) 4 Power		Design of Belt Conveyors : Power requirement, selection of belt, design of tension take up unit, idler pulley	4		
10 (19.09.22 – 25.09.22)	4	Engine Design (Petrol and Diesel): Design of cylinder, Piston with pin and rings	5		
11 (26.09.22 – 2.10.22)	connecting rod & crank shaft with bearings Design of Pump: 5.1 Design of main components of gear pump.				

12 (3.10.22 - 9.10.22)	3	4 Casing and bolt design 5 Sizing of design of suction and delivery pipe 5.2 Design of main components of Centrifugal Pump: 1 Motor selection 2 Suction and Delivery pipe	6
13 (10.10.22 - 16.10.22)	4	3 Design of Impeller, Impeller shaft 4 Design of Volute Casing Revision	6
14 (17.10.22 - 23.10.22)	Unit Te		

Text Books:

1 "Machine Design Exercises", S.N.Trikha - New Delhi Khanna Publisher 1978. 2 "Mechanical Engineering Design", Shigley J E and Mischke C R, 11th Edition 2019, McGraw

Hill, ISBN: 9788184956207.

3 "Design of Machine Elements", Bhandari VB,5th Edition 2020, TMH,ISBN: 9789390177479

4 "Design Data", P.S.G. College of Technology, Coimbatore. ISBN: 978-8192735504

5 "Engineering Design", Dieter G E, McGraw Hill Inc, ISBN: 9781260113297

6 "Mechanical System Design", SP Patil, 2nd Edition., JAICO Publishing House ISBN: 978-8179923153

7 "Material Handling Equipment", Rudenko, 2nd Edition, M.I.R. publishers, Moscow

8 "Material Handling Equipments", N. Rudenko, Peace Publication

9 "Machine Design", R.C.Patel, Pandya, Sikh, Vol -I & II,12th Edition, C. Jamnadas& Co.

10 "Pumps: Theory, Design and Applications", G K Sahu, New Age International 2000 ISBN:

9788122412246 University of Mumbai B. E. (Mechanical Engineering), Rev 2019

11 "Gear Design Handbook", GitinMaitra, 2nd Edition, ISBN: 978-0074602379

12 "Design Data Book- Design of engine parts", Khandare S.S & Kale A.V, 2nd Edition, ISBN: 978-9352654260

Reference Books:

1 "Mechanical design analysis", MF Spotts, 3rd Edition, Prentice Hall Inc.

2 "Machine Design", Black PH and O Eugene Adams, 3rd Edition, McGraw Hill ISBN 10: 0070055246

3 "Machine Design-An Integrated Approach", Robert L. Norton, 6th Edition, Pearson Education, ISBN: 9780135184233

4 "Material Handling Equipments", Alexandrov, 5th Edition, Mir Publication ISBN: 9780714717456

5 Machine Desgin", Reshetov, Mir Publication 1978.

6 "Design of Machine Elements", 4th Edition, V. M. Faires, ISBN: 978-0023359507

Web References:

1. https://onlinecourses.nptel.ac.in/noc22_me62 - Gear And Gear Unit Design: Theory and Practice, IIT Kharagpur

2. https://nptel.ac.in/courses/112/106/112106137/ - Machine Design-II, IIT Madras

Evaluation Scheme

CIE Scheme Internal Assessment: 20 (Average of two tests)

Bandra Mumbai -400 050

Internal Assessment Scheme

	Module	Module Lecture		No. of questions in			
		Hours	Test 1	Test 2	Test 3*		
1	Introduction to Design	3	01 (5 marks)	-			
2	Gear Box	8	01 (15 Marks)	-			
3	Hoisting Mechanism	8	-	01 (10 marks)			
4	Belt Conveyor	4		01 (10 Marks)			
5	Engine Design	8	-	-			
6	Pumps	8					

Note: Four to six questions will be set in the Test paper

Verified by: Programme Coordinator

Subject Expert

Co Attainment: Design of Mechanical Sys	tems (Theory and Lab)				
System deal					
system design.		3			
CC701.3 Design material here it					
MEC701.5. Design material handling systems such as hoisting mechanism of EOT crane, MEC701.4. Design belt conveyor systems					
systems		2.68			
onents such as cylinder, piston, connecting rod a	and crankshaft	3			
e given applications		3			
		an an an an ann an an an an an an an an			
of system design.		3			
mechanism of EOT crane		3			
MEL/01.3. Design belt conveyor systems					
MEL701.4. Design pumps for the given applications					
ponents such as cylinder niston connecting	rod and grankshaft	3			
	f system design. ears for power transmission on the basis of given dling systems such as hoisting mechanism of EO or systems onents such as cylinder, piston, connecting rod a e given applications t of system design. g mechanism of EOT crane yor systems the given applications	ears for power transmission on the basis of given load and speed dling systems such as hoisting mechanism of EOT crane, or systems conents such as cylinder, piston, connecting rod and crankshaft e given applications t of system design. g mechanism of EOT crane EVOT systems			

and the second	and a second	CO Attainme	ent		an de ser an anna a company and a ser an	
	Design of Mech	anical Systems (The		a di se cale cale que con con servico a se seguino de servico de servico de servico de servico de servico de se	9999 - 1944 -	an an an an dara an
CO#	UT	Univ TH			art - Bu - Sanat state state of state of state of the same state of	
COI	3	3	CES	Attainment		
CO2	2		3	3		
CO3	0	3	3	2.68		
	South and the second	3	3	2.04	na da ana ana ana da ana ana ana ana ana	and the second
CO4	2	3	3	2.68	- And a final of the second distance of the second	
CO5	-	3	3	3	an fan de fan se	
CO6	•	3	3	3		
ear, and the second diverse of the	Design of Mecha	nical Systems (Lab		0.000000000000000000000000000000000000	ang bang bang sa	ara na ang kito mang kang kang kang kang kang kang kang k
CO#	Assignment	Drawing Sheet	Course Project	Practical	CES	Attainment
CO1	3	3	3	3	3	3
CO2	3	3	3	3	3	3
CO3	3	-	3	3	3	3
CO4	3	-	3	3	3	3
CO5	3	-	3	3	3	3

CONTRACTOR OF	T college at a los	Course Attainm	ent: Design of Mee	hanical Systems (1	heory)	-				L			1		and the statement
OW/POW	CO Attainment	PO I	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	POII	P012	PS01	PSOT
EC701.1	3	3	3	3				1	0	-			-	100 Pre- 100	-
SC701.2	2.68	3	3	3		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1		2	•	1. A. C	-	-		-
C701.3	2.04	3	3	3	N				2		-		-		-
C701.4	2.68	3	3	3	1	•	-	•	2		-			1 .	
C701.5	3	3	3	3	0.553	1. A.	•		2	•			-		-
C701.6	3	3	3	3		1. (1 .) (1.)	the state of the	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2						1 .
Course-PC	Mapping	3	3	3	12000	141 - C	1	•	2		-				-
Course A	tainment	2.73	2.73	2.73	a city and				2.68						
	- AV - House			1		e all strategies		A CONTRACTOR OF A CONTRACTOR					-	· ·	
	C	Course Attainmen	t: Design of Mech	anical Systems (La	<i>Ъ</i>)						• • • • • • • • • • • • • • • • • • • •			and the second sec	
CO#/PO#	CO Attainment	POI	PO2	PO3	PO4	PO5	PO6	PO7	POS	P09	2010				1
MEL701.1	3	3	3	3		0					POIO	POLI	PO12	2501	P502
MEL701.2	3	3	3	3		3		-		2	•	•	-	-	
MEL701.3	3	3	3	3		0			-	2	•	-	-	-	
MEL701.4	3	3	3	3		0	•		•	2		-	-	- 1	-
MEL701_5	3	3	3	3		0	·	•	•	2	-	-	- 1	- 1	-
Course-	PO Mapping	3	1 3	1 3		U		•	•	2	-	-	-	- 1	-
	Attainment	3.00	3.00	3.00	•	1		•		2	-	-	-		
	PLANTON DEPEND	1 2.00	3.00	5.00	-	3.00	•	•		3.00				1	

Course Attainment

Course Code	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
FEC101	2.71	0	0	0	0	0	0	0	0	0	0	0	0	0
FEC102	2.81	0	0	0	0	0	0	0	0	0	0	0	0	0
FEC103	2.38	0	0	0	0	0	0	0	0	0	0	0	0	0
FEC104	2.48	2.49	2.47	0	0	0	0	0	0	0	0	0	0	0
FEC105	2.55	2.49	0	0	0	0	0	0	0	0	0	0	0	0
FEC201	2.61	0	0	0	0	0	0	0	0	0	0	0	0	0
FEC202	2.94	0	0	0	0	0	0	0	0	0	0	0	0	0
FEC203	2.28	0	0	0	0	0	0	0	0	0	0	0	0	0
FEC204	2.48	2.48	2.48	0	0	0	0	0	0	2.48	0	0	0	0
FEC205	2.2	2.25	2.25	0	0	0	0	0	0	0	0	2.2	0	0
FEC206	0	0	0	0	0	0	0	0	0	3	0	0	0	0
FEL105/ FEL206	2.9	0	2.9	0	2.9	2.9	0	0	2.9	0	0	0	0	0
FEL103	2.94	2.93	2.93	0	0	0	0	0	0	0	0	0	0	0
MEC301	3	0	0	0	0	0	0	0	0	0	0	0	0	0
MEC302	3	3	3	0	0	0	0	0	0	0	0	0	3	0
MEC303	3	3	0	0	3	0	3	0	0	0	0	3	3	0
MEC304	3	3	3	3	0	0	0	0	0	0	0	0	3	0
MEC305	3	3	3	0	0	0	0	0	0	0	0	0	0	0
MEL301	3	3	3	3	3	0	0	0	0	0	0	0	3	0
MEL302	3	0	3	0	3	0	0	0	3	0	0	0	0	0
MESBL301	3	3	3	3	0	0	0	0	0	3	3	0	0	0
MEPBL301	3	3	3	0	0	3	0	0	3	3	0	0	3	3
MEC401	3	0	0	0	0	0	0	0	0	0	0	0	0	0
MEC402	3	3	3	0	0	0	0	0	0	0	0	0	3	0
MEC403	3	3	0	0	0	0	0	0	0	0	0	0	3	0
MEC404	3	3	3	3	3	3	3	3	3	3	3	3	3	0
MEC405	2.43	0	0	0	0	0	0	0	0	0	0	0	2.43	0
MEL402	3	3	3	0	0	0	0	0	0	0	0	0	3	0
MEL403	1.32	1.32	0	0	1.32	0	0	0	0	0	0	0	0	0
MESBL401	3	3	3	0	0	0	0	0	0	0	0	3	3	0
MEPBL401	3	3	3	0	0	3	0	0	3	3	0	0	3	3
MEC501	2.87	2.85	2.92	2.93	3	0	0	0	0	0	0	2.87	2.87	3
MEC502	0	0	2.8	0	2.8	2.8	2.8	0	2.8	2.8	2.8	2.8	0	0
MEC503	0.96	1.14	0	0	0	0	0	0	0	0	0	0	0	0
MEC504	3	3	3	0	3	0	0	0	0	0	0	0	3	0
MEDLO5011	3	2.34	0	2.42	0	0	0	0	3	0	0	0	2.56	2.31
MEDLO5012	2.09	2.09	2.09	0	2.09	0	0	0	0	0	0	0	2.09	0
MEL501	0	0	2.8	0	2.8	2.8	2.8	0	2.8	2.8	2.8	2.8	0	0
MEL502	2.47	2.22	0	0	0	0	0	0	0	0	0	0	0	0
MEL503	3	3	3	0	3	0	0	0	0	0	0	3	3	0
MESBL501	0	0	0	0	0	0	0	3	3	3	0	0	0	0

MEC601	2.92	2.92	2.92	0	0	0	0	0	0	0	0	0	0	0
MEC602	2.76	2.77	2.93	0	0	0	0	0	0	0	0	0	0	0
MEC603	1.97	1.88	1.88	0	1.92	1.93	1.9	0	1.92	1.9	1.9	1.9	0	0
MEC604	2	1.78	1.76	0	1.7	0	1.85	0	1.7	1.7	1.85	1.8	0	0
MEDLO6022	2.45	2.78	0	2.49	0	0	0	0	0	0	0	0	2.58	2.37
MEDLO6023	3	3	3	0	0	0	0	0	0	0	0	0	3	0
MEL601	3	3	3	0	0	0	0	0	0	0	0	0	0	0
MEL602	3	3	0	0	0	0	0	0	0	0	0	0	0	0
MEL603	2.1	2.1	2.1	0	2.1	2.1	2.1	0	2.1	2.1	2.1	2.1	2.1	2.1
MESBL601	3	3	3	3	3	0	0	0	0	0	0	3	0	0
MEC701	2.79	2.79	2.79	0	0	0	0	2.74	0	0	0	0	0	0
MEL701	3	3	3	0	3	0	0	0	3	0	0	0	0	0
MEDLO7032	2.52	2.52	2.52	0	0	0	2.52	0	0	0	0	0	0	0
MEDLO7041	2.84	2.84	0	0	0	0	0	0	0	0	0	2.84	2.84	0
ILO7013	0	0	3	0	0	3	3	3	3	3	0	0	0	0
MEDLO8012	2.36	2.36	2.36	0	2.33	2.33	2.33	2.33	0	2.2	0	2.36	0	2.36
MEL801	3	3	3	0	3	3	3	3	3	3	0	3	0	3
ILO8021	0	0	3	3	0	0	0	0	0	0	3	3	0	0
ILO7015	2	2	0	2	0	0	0	0	0	0	0	0	2	2
MEDLO8052	2.52	2.52	0	0	0	0	0	0	0	0	0	0	2.52	2.52
MEL702	3	3	3	0	3	0	0	0	0	0	0	0	3	0
MEP701	3	3	3	3	3	3	3	3	3	3	3	3	3	3
MEC702	0	2	0	2.4	0	2.33	2.2	0	0	2.2	0	0	0	0
MEL703	0	0	0	0	3	0	0	0	3	3	3	3	0	3
MEC801	0	2.93	0	3	0	2.84	3	0	0	2.88	0	0	0	0
MEP801	3	3	3	3	3	3	3	3	3	3	0	3	3	3
ILO8022	0	0	0	0	0	0	0	0	0	0	3	0	3	0
MEL802	2.53	0	0	0	2.53	2.5	2.5	0	0	0	0	2.53	0	0
MEDLO7031	0	2.35	2.33	0	2.34	2.35	2.3	0	2.29	2.34	2.34	2.32	2.33	2.28
ILO7017	2.2	2.2	0	0	0	0	2.2	0	0	0	0	0	0	0

PO/PSO Attainment

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Direct	2.69	2.65	2.79	2.8	2.67	2.7	2.58	2.88	2.76	2.69	2.65	2.69	2.8	2.64
Attainment														
Indirect	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Attainment														
Final	2.75	2.72	2.83	2.84	2.74	2.76	2.66	2.9	2.81	2.75	2.72	2.75	2.84	2.71
Attainment														

Lesson Plan

Branch: AI & DS Semester: V

Year: 2022-2023

Course Title: Web Computing	SEE: 3 Hours – Theory		
÷	& Oral Examination		
Total Contact Hours: 36 Hours	Duration of SEE: 3 Hrs		
SEE Marks: 80 (Theory) + 20 (IA)			
Lesson Plan Author: Swati, Binge	Date: 3-02-2023	1V	
Checked By:	Date:	<i>g</i>	

Syllabus: Prerequisite: HTML Basics

1. Web Programming Fundamentals (08)

1.1. Working of web browser, HTTP protocol, HTTPS, DNS, TLS, XML introduction, Json introduction, DOM, URL, URI, REST API .

2. JavaScript (08)

Introduction to JavaScript: JavaScript language constructs, Objects in JavaScript- Built in, Browser objects and DOM objects, event handling, form validation and cookies.

Introduction to ES5,ES6, Difference between ES5 and ES6. Variables, Condition, Loops, Functions, Events, Arrow functions, Setting CSS Styles using JavaScript, DOM manipulation, Classes and Inheritance. Iterators and Generators, Promise, Client-server communication, Fetch

3. React Fundamentals (10)

Installation, Installing libraries, Folder and file structure, Components, Component lifecycle, State and Props, React Router and Single page applications, UI design, Forms, Events, Animations, Best practices

4. Node.js (04)

Environment setup, First app, Asynchronous programming, Callback concept, Event loops, REPL, Event emitter, Networking module, Buffers, Streams, File system, Web module.

5. Express models (04)

Introduction, Express router, REST API, Generator, Authentication, sessions, Integrating with React

6. Advance React (04)

Functional components- Refs, Use effects, Hooks, Flow architecture, Model-ViewController framework, Flux, Bundling the application. Web pack.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first-class test is to be conducted when approx. 40% syllabus is completed and second class test when additional40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will consist of 6 questions, each carrying 20 marks.
- 2. The students need to solve a total of 4 questions.
- 3. Question No.1 will be compulsory and based on the entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Outcomes: [Target 2.5]

After successful completion of the course students will be able to:

CSC502.1 : Select protocols or technologies required for various web applications

CSC502.2: Apply JavaScript to add functionality to web pages..

CSC502.3: Design front end application using basic React. .

CSC502.4: Construct web based Node.js applications using Express

CSC502.5: Design front end applications using functional components of React.

CSC502.6: Design back-end applications using Node.js.

CO-PO Mapping: (BL – Blooms Taxonomy, C – Competency, PI – Performance Indicator)

Course Outcome	BL	C	PI	PO	Mapp -ing
CSC502.1 : Select protocols or technologies required for various	2	1.7	1.7.1	P01	3
web applications		2.6	2.6.2	P02	2
CSC502.2: Apply JavaScript to add functionality to web pages.	3	1.7	1.7.1	P01	3
		2.7	2.7.1	P02	3
		3.8	3.8.3	P03	2
CSC502.3: Design front end application using basic React.	3	1.7	1.7.1	P01	3
		2.7	2.7.1	PO2	3
		3.8	3.8.3	PO3	2
		5.5	5.5.2	PO5	1
CSC502.4: Construct web based Node.js applications using	3	1.7	1.7.1	P01	3
Express.	-	2.7	2.7.1	PO2	3
		3.8	3.8.2	PO3	2
		1	3.8.3		
		5.5	5.5.2	P05	1
		9.6	9.6.1	P09	1
		10.4	10.4.2	P010	1
		11.6	11.6.1	P011	1
CSC502.5: Design front end applications using functional	3	1.7	1.7.1	P01	3
components of React.		2.7	2.7.1	PO2	3
		3.8	3.8.2	PO3	2
			3.8.3		
		9.6	9.6.1	P09	1
		10.4	10.4.2	P010	1
		11.6	11.6.1	P011	1
CSC502.6: Design back-end applications using Node.js.	3	1.7	1.7.1	P01	3
		2.7	2.7.1	PO2	3
		3.8	3.8.2	PO3	2
			3.8.3		
		9.6	9.6.1	P09	1
		10.4	10.4.2	PO10	1
		11.6	11.6.1	P011	1

Course Outcome	BL	C	PI	PSO	Mapping
CSC502.1 : Select protocols or technologies required for various	2	1.6	1.5.1	PSO1	2
web applications		1.7	1.7.1		
CSC502.2: Apply JavaScript to add functionality to web pages.	3	1.7	1.7.1	PSO1	2
		2.7	2.7.1		
		3.8	3.8.3		
CSC502.3: Design front end application using basic React.	3	1.7	1.7.1	PSO1	2
		2.7	2.7.1		
		3.8	3.8.3		
		5.5	5.5.2		
CSC502.4: Construct web based Node.js applications using	3	1.7	1.7.1	PSO1	2
Express		2.7	2.7.1		
		3.8	3.8.2		
			3.8.3		
		5.5	5.5.2		
		9.6	9.6.1	6	
		10.4	10.4.2		
		11.6	11.6.1		
CSC502.5: Design front end applications using functional	3	1.7	1.7.1	PSO1	2
components of React.		2.7	2.7.1		
		3.8	3.8.2		
			3.8.3		
		9.6	9.6.1		
		10.4	10.4.2		
CSC502.6: Design back-end applications using Node.js.	3	1.7	1.7.1	PSO1	2
		2.7	2.7.1		
		3.8	3.8.2		
			3.8.3		
		9.6	9.6.1		
		10.4	10.4.2		
		11.6	11.6.1		

CO-PSO Mapping: (BL – Blooms Taxonomy, C – Competency, PI – Performance Indicator)

CO -PO PSO Mapping

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

(Allanderrow	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01
CSC502.1	3	2											2
CSC502.2	100	3	2										2
CSC502.3	V SAL	3	2		1								2
CSC502.4	3	3	2		1				1	1	1		2
CSC502.5	3	3	2		1				1	1	1		2
CSC502.6	3	3	2		1				1	1	1		2
TOTAL	18	17	10		4				3	3	3		12
CO-PO MATRIX	3	2.83	2		1				1	1	1		2

CO Measurement Weightages for Tools:

	Direct Methods (Direct Methods (80%)									
	Test	Lab	Assignment	SEE (T)	Course Exit Survey						
CSC502.1	Test1 (20%)	Lab 7 (20%)	-	60%	(100%)						
CSC502.2	Test1 (20%)	-	Assign 1(20%)	60%	(100%)						
CSC502.3	Test2 (20%)	Lab 5 (20%)	-	60%	(100%)						
CSC502.4	Test2 (20%)	Lab 6 (20%)		60%	(100%)						
CSC502.5	Test2 (20%)		Assign 3(20%)	60%	(100%)						
CSC502.6	Test2 (20%)	MP (20%)	1 0	60%	(100%)						

Attainment:

CO CSC502.1:

Direct Method

 $A_{CSC502.1D} = 0.2 * Test1 + 0.2 * Lab7 + 0.6 * SEE_Theory$ **Final Attainment:**

 $A_{CSC502.1} = 0.8 * A_{CSC502.1D} + 0.2 * A_{CSC502.11}$

CO CSC502.2:

Direct Method

Acsc502.2D = 0.2*Test1+0.2*Assignment1 + 0.6 * SEE_Theory

Final Attainment:

Acsc502.2 = 0.8 * Acsc502.2D + 0.2 * Acsc502.21

CO CSC502.3:

Direct Method Acsc502.3D = 0.2*Test2+0.2*Lab5 + 0.6 * SEE_Theory

Final Attainment:

Acsc502.3 = 0.8 * Acsc502.3D + 0.2 * Acsc502.31

CO CSC502.4:

```
Direct Method
    Acsc502.4D = 0.2*Test2+0.2*Lab6 + 0.6 * SEE_Theory
Final Attainment:
    Acsc502.4 = 0.8 * Acsc502.4D + 0.2 * Acsc502.41
```

CO CSC502.5:

Direct Method Acsc502.5D = 0.2*Test2+0.2*Assignment3 + 0.6 * SEE_Theory **Final Attainment:** Acsc502.5 = 0.8 * Acsc502.5D + 0.2 * Acsc502.51

CO CSC502.6:

Direct Method Acsc502.6D = 0.2*Test2+ 0.2*MP+ 0.6 * SEE_Theory **Final Attainment:** Acsc502.1 = 0.8 * Acsc502.1D + 0.2 * Acsc502.11

Gurriculum Gap/Content Beyond Syllabus:

的目的是我的意思。

Sr.No	Gap/Content Beyond Syllabus	Activity	Topic
1	HTML	Extra Lecture	HTML and HTML5.0
2	Sample Demo Practical Implementation	Hands-on	MEAN Stack with MongoDB
3	Security in Web Technology, Search Engine Optimization, Web based repository hosting, Project Management tools (EXPERT LECTURE)	Seminar	Seminar on Web based repository hosting -GIT , GitHub and Project Management tool - Jira
4	Django, Backend Node and Express connectivity with MongoDB (WORKSHOP)	Workshop	Portfolio and API development (Backend with node-express- MongoDb and Django)

Lecture Plan : SEM VII-ML-CSC604

Modes of Content Delivery:

i	Class Room	v	Self-Learning Online	ix	Industry Visit
	Teaching		Resources		
ii	Tutorial	vi	Slides	x	Group Discussion
iii	Remedial Coaching	vii	Simulations/Demonstrations	xi	Seminar
iv	Lab Experiment	viii	Expert Lecture	xii	Case Study

Term : 18th July – 30 Oct 2022

(UT1:05 Sept - 07 Sept) (UT2:170ct-19 Oct)

No.	Portion to be covered	Planned	Actual date	Content Delivery
		date		Reference
				/Assessment
				Method
1	Web programming Fundamentals: Introduction	20/07/2022	20/07/2022	PPT/BlackBoard
	Terms- Client-Server, Web Page, URL, URI, WWW,			
	Internet, Browser, Server, Protocols. DNS, TLS			
	Syllabus and CO-PO discussion. Mini Project topics			
2	Web Application Architecture & technologies	22/07/2022	22/07/2022	PPT
3	HTTP-HTTPS Protocol, DNS, TLS, URL, URI	25/07/2022	25/07/2022	PPT/BlackBoard
4	JSON-XML introduction, REST API	27/07/2022	27/07/2022	PPT/BlackBoard
5	HTML5 – Elements, Attributes, Head, Body,	29/07/2022	29/07/2022	PPT/Lab Demo
	Hyperlink, Formatting, Images, Lists, Multimedia			
6	Tables, Frames, Forms	1/8/2022	3/8/2022	PPT/Lab Demo
7	CSS3 - Syntax, Inclusion, Color, Background,	3/8/2022	5/8/2022	Lab Demo
	Fonts, Tables, Lists			
8	CSS3 Selectors, Pseudo Classes, Pseudo Elements	5/8/2022	8/8/2022	Lab Demo
9	Bootstrap: BootstrapGrid System, Forms, Button	8/8/2022	9/8/2022	Lab Demo
10	Navbar, Breadcrumb, Jumbotron	10/8/2022	9/8/2022	Lab Demo
11	JavaScript: Introduction, variables, operators,	12/8/2022	10/8/2022	PPT
	Conditions, loops, Functions			
12	Events, Classes and Objects in JavaScript, Built-in,	17/08/2022	12/8/22	PPT
10	Browser objects and DOM objects			
13	Event handling, form validation and cookies.	17/08/2022	12/8/22	PPT/Demo
14	Introduction to ES5,ES6, Difference between ES5	22/08/2022	17/08/2022	PPT
	and ES6, Var, Conditions, Loops, Functions,		and an and a second	
15	Events, Arrow Functions.			
13	Setting CSS styles for using Javascript, DOM Manipulations	24/08/2022	22/08/2022	PPT/Blackboard
16	Classes and Inheritance, Iterators and Generators,	26/00/0005		
	Promise	26/08/2022	24/08/2022	PPT
17	Client-server communication, Fetch	20/00/0000	29/08/2022	
		29/08/2022	29/08/2022	PPT
and services			09/09/2022	and the second second

No.	Portion to be covered	Planned	Actual date	Content Delivery -
		date		Reference
				/Assessment
				Method
18	React Fundamentals: Installation, Installing	09/09/2022	12/09/2022	PPT Demo
1	Libraries, Folder and File structure		13/09/2022	
19	Components, Component lifecycle	12/09/2022	14/09/2022	PPT /Demo
20	State and Props	14/09/2022	16/09/2022	PPT /Demo
21	React Router and Single page applications	16/09/2022	19/09/2022	PPT /Demo
22	UI design	19/09/2022	19/09/2022	PPT/Blackboard
23	Forms, Events	21/09/2022	21/09/2022	PPT /Demo
24	Animations, Best Practices	21/09/2022	21/09/2022	PPT
25	Node.js: Environment setup, First app,	23/09/2022	23/09/2022	PPT /Demo
26	Asynchronous programming, Callback concept,	26/09/2022	23/09/2022	PPT /Demo
	Loops			
27	REPL, Event emitter	28/09/2022	26/09/2022	
28	Networking Module, Web Module	30/09/2022	28/09/2022	
29	Buffers, Streams, File system	03/10/2022	28/09/2022	
30	Express : Introduction, Express Router	07/10/2022	30/09/2022	
31	REST API, Generator	08/10/2022	3/10/2022	
32	Authentication, Session	10/10/2022	07/10/2022	
33	Integrating with React	12/10/2022	10/10/2022	
34	Case Study	14/10/2022	12/10/2022	
35	Advanced React: Functional Components-Refs,	20/10/2022	14/10/2022	PPT/blackboard
36	Use Effects, Hooks	21/10/2022	21/10/2022	
37	Flow Architectures	27/10/2022	27/10/2022	1
38	Model-View Controller Framework	28/10/2022	28/10/2022	1
39	FLUX	26/08/2022	26/08/2022	1 ,
40	Bundling the application. Web Pack.	28/10/2022	27/10/2022	PPT/Demo

Total Lectures : 40

Text Books:

- 1. Rediscovering JavaScript, Master ES6, ES7, and ES8, By Venkat Subramaniam · 2018
- 2. Learning React Functional Web Development with React and Redux, Alex Banks and Eve Porcello, O'Reilly
- 3. Learning Redux, Daniel Bugl, Packt Publication
- 4. Learning Node.js Development, Andrew Mead, Packt Publishing
- 5. RESTful Web API Design with Node.js 10, Valentin Bojinov, Packt Publication

References books:

- 1. Web Development with Node and Express, Ethan Brown, O'Reilly
- 2. HTML5 Cookbook, By Christopher Schmitt, Kyle Simpson, O'Reilly Media
- 3. Core Python Applications Programming by Wesley J Chun Third edition Pearson Publication

Reference Web Resources:

- 1. https://www.coursera.org/learn/html-css-javascript-for-web-developers?action=enroll
- 2. https://onlinecourses.swayam2.ac.in/ugc19_lb05/preview
- 3. https://reactjs.org/tutorial/tutorial.html
- 4. https://react-redux.js.org/introduction/quick-start 4. https://webpack.js.org/

SEM V- Web Computing Lab (2022-2023)

DEPARTMENT OF AI and DS Teacher Name : Swati Ringe

List of Experiments/Mini Project Plan

Expt No.	Date (week)	CO Map	Title/aim	
01	27 July	LC01	Develop web page using HTML5 tags. (USE- IMAGE, LINKS, TABLE, FORM, LIST, SEMANTIC ELEMENTS, HTML5 FEATURES- audio, video, drag-drop, geolocation, canvas)	
02	2 Aug	LCO2	Apply the styles (CSS3- inline, internal and external) to web page (APPLY COLOR, BACKGROOND COBOON, Internal,	
03	9 Aug	LCO3	FONT STYLES, TABLE STYLES, EIST STYLES, Use Bootstrap to make the webpage dynamic (BootstrapGrid system, Forms, Button, Navbar, Breadcrumb, Jumbotron)	
04	23 Aug	LCO4	Use JavaScript to make the webpage interactive (Loops, Functions, Events, Classes and Objects, Error handling, Form	
05	30 Aug	C03	Design a web page REACT JS (JSX, Components, Props, State, Forms, Events, Router) – Mini Project	
06	06 Sept	C04	Server side Programming with NODE JS (Callbacks, Event loops, Creating express app) - Mini Project	
07	13 Sept	C01	Dynamic routing using Cisco packet TRACER/GNS3	
08	20 Sept	LCO6	Design and Simulate VLANs on the switch/router using Cisco packet tracer/ GNS3	
09	27 Sept	LCO6	Design and Simulate NAT on the router using Cisco packet tracer/ GNS3	
10	04 Oct	-	Simulation of Software Defined Network using Mininet	

Accimmente Plan

Assignments Plan O1 20 Sept 2022			Prepare a diagrammatic view of listing of all in-built and DOM objects of JavaScript. Highlight/Mention few Important functions that are frequently used. Explain with real world example how to Create user defined Object using JavaScript?	
02	5 Oct	To do CO4&6	How does Node.js Works? What are the advantages and limitations of using Express with Node.js	
03	15 Sept onwards	All	Topic of Study	

Mini Project Plan

Mini l	Project Plan		Mini Project: One real life Web Application using (ReactJs/NodeJs/Exp	oress/Flux) (Group of 1/2/3/4).
11	2 Aug 13 Aug	LCO3 LCO4 LCO5	Mini Project: One real life Web Application using (react) - y = 1 Topic Submission Progress review Presentation and Demo	
	3 Oct 10 Oct	C06	Mini Project Report submission	

Evaluation Scheme CIE Scheme

Teaching Scheme

Course	Course Name	Teachir	Teaching Scheme Credit			sAssigned			
Code		Theory	Practical	Tutorial	Theory	Practical/Oral	Tut	Credits	
CSC502	Web Computing	03			03			03	
CSL502	Web Computing and Networking Lab		02			1		01	

Examination Scheme

Course Code	Course Name	Theory	/ Marks			Term	Practical	Total
			al Assess	ment	Work	& Oral		
		Test1	Test2	Avg	Sem Exam			
CSC502	Web Computing	20	20	20	80 (3hr)			100
CSL502	Web Computing and Networking Lab					25	25	50

Internal Assessment: 20 (Average of two tests)

Internal Assessment Scheme

ilei	Module Lecture Hours		No. o	No. of questions in SEE		
			Test 1	Test 2	Test 3*	
1	Web Programming Fundamentals	8	02 (10 marks)	-		02 (10 Marks)
2	JavaScript	8	02 (10 Marks)	-		04 (30 Marks)
3	React Fundamentals	10	-	01 (05 Marks)		03 (20 Marks)
4	Node.js	4	8 - 1	01 (05 Marks)		02 (20 Marks)
5	Express models	4	8 .	01 (05 Marks)		03 (25 Marks)
6	Advanced React	4	3 -	01 (05 Marks)		02 (15 Marks)

Note: Four to six questions will be set in the Test paper

Verified by:

Subject Expert

60/ Programme Coordinator

Subject: Web Computing (CSC502)

Credits-3

CO Statements

After successful completion of the course students will be able to:

CSC502.1: Select protocols or technologies required for various web applications

CSC502.2: Apply JavaScript to add functionality to web pages..

CSC502.3: Design front end application using basic React.

CSC502.4: Construct web based Node.js applications using Express

CSC502.5: Design front end applications using functional components of React.

CSC502.6: Design back-end applications using Node.is

Mapping of CO and PO/PSO

Relationship of course outcomes with program outcomes:

Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	P09	P010	P011	P012	PS01	<u>CO</u> Attainment YEAR 22-23
CSC502.1	3	2											2	2.32
CSC502.2	3	3	2	_									2	2.04
CSC502.3	3	3	2		1								2	2.16
CSC502.4	3	3	2		1				1	1	1		2	2.32
CSC502.5	3	3	2		1				1	1	1		2	1.68
CSC502.6	3	3	2		1				1	1	1		2	2.16
TOTAL	18	17	10		4				3	3	3		12	2.10
CO-PO MATRIX	3	2.83	2		1				1	1	1	St. Chiefe	2	and the second
PO Attainment	2.1	1.342	2.07		2.08				2.05	2.053	2.053		2.113	

10000

SUBJECT : Web Computing (CS	TE COMPUT	ER (SEM-V) 2022-202			The state of the
Upon completion of this course students will be	able to:	and the states of the	CREDITS :3		Long Charles
CSC502.1 : Select protocols or technolo	gies required	for various web a	pplications		
Target Level - CO1	Weightage	No. Of students Scoring Minimum	Successful Students %	Attainment	Attainment Level
Direct Method				(LEVEI
Test1		1			
60% of students will score minimum 60% marks	0.2	6 marks(out of 10)	59	86.7647059	3
Lab 7	12			00.1047033	
80% of students will minimum score 70% marks	0.2	7 marks (out of 10)	68	100	3
End Semester Examination(Theory)				100	
60% of students will minimum score 55% marks	0.6	44 marks(out of 80)	48	70.5882353	2
		Total Students	68		
Indirect Method					
Course Exit Survey		agree + Strongly agree	36	72	2
60% students will strongly agree and agree	and a start		50		
Attainment - Direct Method	2.4				
Overall Attainment	2.32	Overall Attainment=((8*Direct Mot	hod Attain	

D

TARGET LEVEL	PERCENTAGE	And the second second	1
	LOW(1)	MODERATE(2)	SUBSTANTIAL(
Test 1 and Test 2	60 TO 70	71-85	>85
ASSIGN2	70-80	81-85	>85
Quiz1	70-80	81-85	>85
End Sem Exam % Practical-Oral	>70 TO < 75	76-80	>80
End Sem Exam % Theory	>55 TO < 65	66-76	>76
CES	60-70	70-80	>80%

CSC502.2: Apply JavaScript to add function	ality to web	pages			
Target Level - CO2	Weighta ge	No. Of students Scoring Minimum	Successful Students %	Attainment (in %)	Attainment Level
Direct Method	20				
Test1			1		
60% of students will score minimum 60% marks	0.2	6 marks(out of 10)	38	55.8823529	0
Assignment1					Remote State Contractor State
80% of students will minimum score 70% marks	0.2	7 marks (out of 10)	60	88.2352941	3
End Semester Examination(Theory)	1				
60% of students will minimum score 55% marks	0.6	44 marks(out of 80)	48	70.5882353	2、
		Total Students	68		
Indirect Method			I		
Course Exit Survey		agree + Strongly agree	44	88	3
60% students will strongly agree and agree			50		
Attainment - Direct Method	1.8				
Overall Attainment		Overall Attainment=(0			

TARGET LEVEL PER	RCENTAGE		
	LOW(1)	MODERATE(2)	SUBSTANTIAL(3
Test 1 and Test 2	60 TO 70	71-85	>85
ASSIGN	70-80	81-85	>85
Quiz1	70-80	81-85	>85
End Sem Exam % Practical-Oral	70 TO < 7.	76-80	>80
End Sem Exam % Theory	55 TO < 6.	66-76	>76
CES	60-70	70-80	>80%

A second s	COMPUT	ER (SEM-V) 2022-202			
SUBJECT : Web Computing (CSC502)			CREDITS :3	Call States	
SC502.3: Design front end application using basic F	React.				
Farget Level - CO3	Weight age	No. Of students Scoring Minimum	Successful Students %	A MARKAN AND A MARKAN	Attainment Level
Direct Method					
Test2		-			Second Contractor Second Second
Target: 60% of students will score minimum 60% marks	0.2	3 marks(out of 05)	57	83.8235294	2
Lab Assignment 5	8				
80% of students will minimum score 70% marks	0.2	7 marks (out of 10)	65	95.5882353	3
End Semester Examination(Theory)					
60% of students will minimum score 55% marks	0.6	44 marks(out of 80)	48	70.5882353	2
		Total Students	68		
Indirect Method]
Course Exit Survey		agree + Strongly agree	38	76	2
60% students will strongly agree and agree	Sec.		50		March 19
Attainment - Direct Method	2.2	2			
Overall Attainment	2.16	Overall Attainment=(0.8*Direct Atta	inment +0 2*1	ndirect Attainment)

TARGET LEVEL PER	CENTAGE	ALL CONTRACTOR OF THE OWNER OWNE	
	LOW(1)	MODERATE(2)	SUBSTANTIAL(3
Test 1 and Test 2	60 TO 70	71-85	>85
ASSIGN2	70-80	81-85	>85
Quiz1	70-80	81-85	>85
End Sem Exam % Practical-Oral	70 TO < 7	76-80	>80
End Sem Exam % Theory	55 TO < 6	66-76	>76
CES	60-70	70-80	>80%

TE CO SUBJECT : Web Computing (CSC502)	MPUTER (SEN	A-V) 2022-2023 CREDIT	5.3		
CSC502.4: Construct web based Node.js application	s using Expre		0.0	Re marke may	
Target Level - CO4	Weightage	No. Of students Scoring Minimum	Successful Students %	Attainment (in %)	Attainmen Level
Direct Method Test2					
Target: 60% of students will score minimum 60% marks	0.2	6 marks(out of 10)	59	86.7647059	3
Lab Assignment 6					
80% of students will minimum score 70% marks	0.2	7 marks (out of 10)	67	98.5294118	3
End Semester Examination(Theory)					
60% of students will minimum score 55% marks	0.6	44 marks(out of 80)	48	70.5882353	2
		Total Students	68		
Indirect Method					
Course Exit Survey		agree + Strongly agree	37	74	2
0% students will strongly agree and agree		State - State - Mary	50	and a state of the	
Attainment - Direct Method	2.4				
Overall Attainment	2.32	Overall Attainment=(0.	8*Direct Attal		

TARGET LEVEL P	ERCENTAGE		
	LOW(1)	MODERATE(2)	SUBSTANTIAL
Test 1 and Test 2	60 TO 70	71-85	>85
ASSIGN2	70-80	81-85	>85
Quiz1	70-80	81-85	>85
End Sem Exam % Practical-Oral	>70 TO < 75	76-80	>80
End Sem Exam % Theory	>55 TO < 65	66-76	>76
CES	60-70	70-80	>80%

TE COMPUTER (SEM-V) 2022-2023

SUBJECT : Web Computing (CSC502)

CREDITS :3

Upon completion of this course students will be able to:

CSC502.5: Design front end applications using functional components of React.

Target Level - CO5	Weight age	No. Of students Scoring Minimum	Successful Students %	and the second of the second of the	Attainment Level
Direct Method					Level and the second
Test2					
Target: 60% of students will score minimum 60% marks	0.2	6 marks(out of 10)	48	70.5882353	
Assignment 3			40	70.5682353	1
80% of students will minimum score 70% marks	0.2	7 marks (out of 10)	48	70 5993353	
End Semester Examination(Theory)			40	70.5882353	1
60% of students will minimum score 55% marks	0.6	44 marks(out of 80)	48	70.5882353	2
		Total Students	68		
Indirect Method					
Course Exit Survey	1 1	agree + Strongly agree	20		
0% students will strongly agree and agree			38 50	76	2
			50		West Party Party Party
Attainment - Direct Method	1.6				
Overall Attainment					
Steran Artanninen Geranden and Andreas	1.68	Overall Attainment=(0.	8*Direct Metho	d Attainment	10 2*Indian at \$4 at

TARGET LEVEL PER	RCENTAGE		
	LOW(1)	MODERATE(2)	SUBSTANTIAL(
Test 1 and Test 2	60 TO 70	71-85	>85
ASSIGN2	70-80	81-85	>85
Quiz1	70-80	81-85	>85
End Sem Exam % Practical-Oral	70 TO < 7	76-80	>80
End Sem Exam % Theory	55 TO < 6	66-76	>76
CES	60-70	70-80	>80%

TE COMPUTER (SEM-V) 2022-2023

SUBJECT : Web Computing (CSC502)

CREDITS :3

Upon completion of this course students will be able to:

CSC502.6: Design back-end applications using Node.js.

Target Level - CO6	Weight age	No. Of students Scoring Minimum	Successful Students %	The second reading of	Attainment Level
Direct Method					
Test2	3				
Target: 60% of students will score minimum 60% marks	0.2	6 marks(out of 10)	52	76.4705882	2
MP					
80% of students will minimum score 70% marks	0.2	7 marks (out of 10)	66	97.0588235	3
End Semester Examination(Theory)					
60% of students will minimum score 55% marks	0.6	44 marks(out of 80)	48	70.5882353	2
		Total Students	68		
Indirect Method					
	2	agree +			

Course Exit Survey		Strongly agree	38	76	2	N.
60% students will strongly agree and agree			50			CALLER A
	a) a for the					
Attainment - Direct Method	22	2				
Overall Attainment	2.16	Overall Attainment=	0.8*Direct Metho	od Attainme	nt +0.2*Indire	ect Method A

	LOW(1)	MODERATE(2)	SUBSTANTIAL(3
Test 1 and Test 2	60 TO 70	71-85	>85
ASSIGN2	70-80	81-85	>85
Quiz1	70-80	81-85	>85
End Sem Exam % Practical-Oral	70 TO < 7	76-80	>80
End Sem Exam % Theory	55 TO < 6	66-76	>76
CES	60-70	70-80	>80%

Subject: Web Computing (CSC502)

Credits-3

CO Statements

After successful completion of the course students will be able to:

CSL502.1: Identify and apply the appropriate HTML tags to develop a webpage

CSL502.2: Identify and apply the appropriate CSS tags to format data on webpage

CSL502.3: Construct responsive websites using Bootstrap

CSL502.4: Use JavaScript to develop interactive web pages.

CSL502.5: Construct front end applications using React and back end using Node.js/express

CSL502.6: Use simulator for CISCO Packet Tracer/GNS3.

Mapping of CO and PO/PSO

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in re-

	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	P01 0	P011	P012		PSO1	CO Attainment YEAR 22-23
CSL502.1	3				3			2						3	3
CSL502.2	3	3	3	2	3				2	2	2	2		3	3
CSL502.3	3	3 3	3	2	3				2	2	2	2		3	2.8
CSL502.4	3	3 3	3	2	3				2					3	3
CSL502.5	3	3 3	3 3	1											2.8
CSL502.6	1 3	3 3	3 3	8											2.6
TOTAL	1	8 15	5 15	5 6	5 12	: (0 0) (6 0	4	4	4	0	12	
CO-PO MATRIX		3 3	3 3	3 2	3			「「「ない」と	2	2	2	2		3	1
PO Attainment	2.	9 0.57	7 2.84		2.8				2.8	2.8	2.8		A MAR	2.867	- and a second

Jeson

TE COMPUTER (SEM-V) 2022-2023 SUBJECT : Web Computing Lab (CSL502)

CREDITS :1

pon completion of this course students will be able to:

SL502.1: Identify and apply the appropriate HTML tags to develop a webpage

rget Level - CO1	Weightage	No. Of students Scoring Minimum	Successful Students %	Attainment (in %)	Attainment Level
irect Method					
ab1				11	
0% of students will minimum score 70% marks	0.3	7 marks(out of 10)	68	100	3
Assign Activity1					
80% of students will minimum score 70% marks	0.2	7 marks (out of 10)	66	97.0588235	3
End Semester Examination(Practical/Oral)			5710500255	
80% of students will minimum score 70% marks	0.5	17.5 marks(out of 25)	63	92.6470588	3
		Total Students	68		
Indirect Method					
Course Exit Survey		agree + Strongly agree	42	84	3
60% students will strongly agree and agree		The second s	50		and the second
Attainment - Direct Method		3			
Overall Attainment		Overall Attainment=(0.)	8*Direct Metho	d Attainment +	0.2*Indirect Methor

TARGET LEVEL PERCENTAGE								
Restriction of the second second second	LOW(1)	MODERATE(2)	SUBSTANTIAL(3					
Test 1 and Test 2	60 TO 70	71-85	>85					
ASSIGN2	70.00	81-85	>85					
Ouiz1	70-80	81-85	>85					
End Sem Exam % Practical-Oral	>70 TO < 75	76-80	>80					
End Sem Exam % Theory		66-76	>76					
CES		70-80	>80%					

35

SUBJECT : Web Computing Lab (CSL5)	02)	R (SEM-V) 2022-2023	CREDITS :1		Lange
502.2: Identify and apply the appropriate (CSS tags to	format data on wel	bpage		
rget Level - CO2	A COLORED TO A COL	No. Of students Scoring Minimum	Successful Students %		Attainment Level
rect Method					
b2					COLOR DOLLAR BOARD BO
% of students will minimum score 70% marks	0.3	7 marks(out of 10)	68	100	3
1ini Project					
0% of students will minimum score 70% marks	0.2	7 marks (out of 10)	60	88.2352941	3
End Semester Examination(Practical/Oral)					
80% of students will minimum score 70% marks	0.5	17.5 marks(out of 25)	63	92.6470588	3
		Total Students	68		
Indirect Method					
Course Exit Survey		agree + Strongly agree	42	84	З
60% students will strongly agree and agree			50		
	Distance in case of	2			
Attainment - Direct Method	a ber allanta a	3			

TARGET LEVEL PER	LOW(1)	MODERATE(2)	SUBSTANTIAL(
Test 1 and Test 2	60 TO 70	71-85	>85
ASSIGN	70-80	81-85	>85
Ouiz1	70-80	81-85	>85
End Sem Exam % Practical-Oral	70 TO < 7	76-80	>80
End Sem Exam % Theory		66-76	>76
CES	60-70	70-80	>80%

L502)		CREDITS :1	H BALLAND	
ootstrap				
Weight age	No. Of students Scoring Minimum	Successful Students %	Attainment (in %)	Attainment Level
0.3	7 marks(out of 10)	68	100	3
0.2	7 marks (out of 10)	66	97.0588235	3
)				
0.5	17.5 marks(out of 25)	63	92.6470588	3
	Total Students	68		
No.				
	agree + Strongly agree	37	74	2
1111	a series a la constance de la c	50	学行の大学会会	
1.0.1	3			
	iootstrap Weight age 0.3 0.3 0.2	Weight age No. Of students Scoring Minimum 0.3 7 marks(out of 10) 0.2 7 marks (out of 10) 0.5 17.5 marks(out of 25) Total Students agree +	Weight age No. Of students Scoring Minimum Successful Students % 0.3 7 marks(out of 10) 68 0.2 7 marks (out of 10) 66 0) 0.5 17.5 marks(out of 25) 63 0 7 total Students 68 68 0 3 7 marks (out of 25) 63 0.5 17.5 marks(out of 25) 63 63 0.5 17.5 marks(out of 25) 50 50	Weight age No. Of students Scoring Minimum Successful Students % Attainment (in %) 0.3 7 marks(out of 10) 68 100 0.2 7 marks (out of 10) 66 97.0588235 0) 0.5 17.5 marks(out of 25) 63 92.6470588 1) 7 total Students 68 100 agree + Strongly agree 37 74 100 100 100 100

TARGET LEVEL PERCENTAGE								
	LOW(1)	MODERATE(2)	SUBSTANTIAL(
Test 1 and Test 2	60 TO 70	71-85	>85					
ASSIGN2	70-80	81-85	>85					
Quiz1	70-80	81-85	>85					
End Sem Exam % Practical-Oral	70 TO < 7	76-80	>80					
End Sem Exam % Theory	55 TO < 6	66-76	>76					
CES	60-70	70-80	>80%					

SUBJECT : Web Computing Lab (CSL502) CREDITS :1 CSL502.4: Use JavaScript to develop interactive web pages.							
irect Method							
ab 4							
30% of students will minimum score 70% marks	0.3	7 marks(out of 10)	68	100	3		
Mini Project	A DECEMBER						
80% of students will minimum score 70% marks	0.2	7 marks (out of 10)	66	97.0588235	3		
End Semester Examination(Practical/Oral)							
80% of students will minimum score 70% marks	0.5	17.5 marks(out of 25)	63	92.6470588	3		
		Total Students	68				
Indirect Method							
Course Exit Survey		agree + Strongly agree	44	88	3		
60% students will strongly agree and agree	17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		50				
Attainment - Direct Method		3					
Attainment - Direct Method Overall Attainment		3 3 Overall Attainment=(0	.8*Direct Attai	nment +0.2*In	direct A		

TARGET LEVEL PERCENTAGE					
A REAL PROPERTY OF THE REAL	LOW(1) MODERATE(2)		SUBSTANTIAL(
Test 1 and Test 2	60 TO 70	71-85	>85		
ASSIGN2	70-80	81-85	>85		
Quiz1	70-80	81-85	>85		
	>70 TO < 75	76-80	>80		
End Sem Exam % Theory		66-76	>76		
CES	60-70	70-80	>80%		

Open completion of this course students will be able to:

CSL502.5: Construct front end applications using React and back end using Node.js/express

arget Level - CO5	Weight age	No. Of students Scoring Minimum	Successful Students %	Attainment (in %)	Attainment Level
Direct Method					
Mini Project					
30% of students will minimum score 70% marks	0.4	7 marks(out of 10)	66	97.0588235	3
Lab 5-6		the largest			
80% of students will minimum score 70% marks	0.1	7 marks (out of 10)	66	97.0588235	3
End Semester Examination(Practical/Oral)					
80% of students will minimum score 70% marks	0.5	17.5 marks(out of 25)	63	92.6470588	3
		Total Students	68		
Indirect Method					
Course Exit Survey		agree + Strongly agree	38	76	2
60% students will strongly agree and agree		a a stall be a server	50		
Attainment - Direct Method		3			
Overall Attainment	2.8	Overall Attainment=(0.	.8*Direct Meth	d Attainment	+0.2*Indirect Metho

TARGET LEVEL PERCENTAGE						
		MODERATE(2)	SUBSTANTIAL(
Test 1 and Test 2	60 TO 70	71-85	>85			
ASSIGN2	70-80	81-85	>85			
Quiz1	70-80	81-85	>85			
End Sem Exam % Practical-Oral	70 TO < 7	76-80	>80			
End Sem Exam % Theory	55 TO < 6	66-76	>76			
CES	60-70	70-80	>80%			

TE COMPUTER (SEM-V) 2022-2023

SUBJECT : Web Computing Lab(CSL502)

CREDITS :1

Upon completion of this course students will be able to:

CSL502.6: Use simulator for CISCO Packet Tracer/GNS3.

arget Level - CO6	Weight age	No. Of students Scoring Minimum	Successful Students %	Attainment (in %)	Attainment Level
irect Method					
ab 8					
0% of students will minimum score 70% marks	0.2	7 marks(out of 10)	68	100	3
Lab 9-10					
80% of students will minimum score 70% marks	0.3	7 marks (out of 10)	68	100	3
End Semester Examination(Practical/Oral)					
80% of students will minimum score 70% marks	0.5	17.5 marks(out of 25)	63	92.6470588	3
		Total Students	68		
Indirect Method		_ I I			
Course Exit Survey		agree + Strongly agree	33	66	2
60% students will strongly agree and agree	3 4 2		50		
Attainment - Direct Method		8			
Overall Attainment	2.6	Overall Attainment=(0.8	8*Direct Metho	d Attainment +(0.2*Indirect Method A

TARGET LEVEL PERCENTAGE					
	LOW(1)	MODERATE(2)	SUBSTANTIAL(
Test 1 and Test 2	60 TO 70	71-85	>85		
ASSIGN2	1 20 00	81-85	>85		
Quiz1	70-80	81-85	>85		
End Sem Exam % Practical-Oral	>70 TO < 75	76-80	>80		
End Sem Exam % Theory	>55 TO < 65	66-76	>76		
CES	60-70	70-80	>80%		

